Source Code Cross Referenced for Chorus.java in  » 6.0-JDK-Modules » java-3d » com » db » media » audio » dsp » processors » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » com.db.media.audio.dsp.processors 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright (c) 2000 Silvere Martin-Michiellot All Rights Reserved.
003:         *
004:         * Silvere Martin-Michiellot grants you ("Licensee") a non-exclusive,
005:         * royalty free, license to use, modify and redistribute this
006:         * software in source and binary code form,
007:         * provided that i) this copyright notice and license appear on all copies of
008:         * the software; and ii) Licensee does not utilize the software in a manner
009:         * which is disparaging to Silvere Martin-Michiellot.
010:         *
011:         * This software is provided "AS IS," without a warranty of any kind. ALL
012:         * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
013:         * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
014:         * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. Silvere Martin-Michiellot
015:         * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES
016:         * SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
017:         * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
018:         * Silvere Martin-Michiellot OR ITS LICENSORS BE LIABLE
019:         * FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
020:         * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
021:         * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
022:         * OR INABILITY TO USE SOFTWARE, EVEN IF Silvere Martin-Michiellot HAS BEEN
023:         * ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
024:         *
025:         * This software is not designed or intended for use in on-line control of
026:         * aircraft, air traffic, aircraft navigation or aircraft communications; or in
027:         * the design, construction, operation or maintenance of any nuclear
028:         * facility. Licensee represents and warrants that it will not use or
029:         * redistribute the Software for such purposes.
030:         *
031:         */
032:
033:        // This code is repackaged after the code from Craig A. Lindley, from Digital Audio with Java
034:        // Site ftp://ftp.prenhall.com/pub/ptr/professional_computer_science.w-022/digital_audio/
035:        // Email
036:        package com.db.media.audio.dsp.processors;
037:
038:        public class Chorus extends AbstractAudio {
039:
040:            // Private class data
041:            private boolean initializationComplete = false;
042:            private int delayInMs;
043:            private double halfDepth = 1;
044:            private double halfDepthInSamples;
045:            private double rateInHz;
046:            private boolean isSinLFO;
047:            private boolean invertPhase;
048:            private double step;
049:            private double sweepValue = 0;
050:            private int sampleNumber = 0;
051:            private double radiansPerSample;
052:
053:            private int depthLevel;
054:            private int dryLevel;
055:            private int wetLevel;
056:            private int feedbackLevel;
057:
058:            private int sampleRate = 0;
059:            private int numberOfChannels = 0;
060:            private int delayBufferSize;
061:
062:            private short[] localBuffer = null;
063:            private int[] delayBuffer = null;
064:            private int[] leftDelayBuffer = null;
065:            private int[] rightDelayBuffer = null;
066:
067:            private int readIndex;
068:            private int writeIndex;
069:
070:            public Chorus() {
071:
072:                super ("Chorus", AbstractAudio.PROCESSOR);
073:
074:                initializationComplete = false;
075:                isSinLFO = false;
076:                invertPhase = false;
077:
078:                // Allocate local sample buffer
079:                localBuffer = new short[AbstractAudio.SAMPLEBUFFERSIZE];
080:
081:            }
082:
083:            // Process the samples that pass thru this effect
084:            public int getSamples(short[] buffer, int length) {
085:
086:                if (getByPass() || !initializationComplete)
087:                    return previous.getSamples(buffer, length);
088:
089:                // Read number of samples requested from previous stage
090:                int len = previous.getSamples(localBuffer, length);
091:                if (len == -1)
092:                    return -1;
093:
094:                if (numberOfChannels == 1)
095:                    return processMonoSamples(localBuffer, buffer, len);
096:                else
097:                    return processStereoSamples(localBuffer, buffer, len);
098:
099:            }
100:
101:            // Process mono samples
102:            protected int processMonoSamples(short[] localBuffer,
103:                    short[] buffer, int len) {
104:
105:                // Do the processing
106:                for (int i = 0; i < len; i++) {
107:
108:                    // Fetch the input samples from the local buffer
109:                    int inputSample = (int) localBuffer[i];
110:
111:                    // Calculate sample offsets for fetching two samples
112:                    double sampleOffset1 = sweepValue - halfDepthInSamples;
113:                    double sampleOffset2 = sampleOffset1 - 1;
114:
115:                    // Calculate delta for linear interpolation
116:                    double delta = Math
117:                            .abs((int) sampleOffset1 - sampleOffset1);
118:
119:                    int actualIndex1 = readIndex + (int) sampleOffset1;
120:                    int actualIndex2 = readIndex++ + (int) sampleOffset2;
121:                    boolean underflow1 = (actualIndex1 < 0);
122:                    boolean underflow2 = (actualIndex2 < 0);
123:
124:                    // Adjust indices for possible under/over flow
125:                    if (underflow1)
126:                        actualIndex1 += delayBufferSize;
127:                    else
128:                        actualIndex1 %= delayBufferSize;
129:
130:                    if (underflow2)
131:                        actualIndex2 += delayBufferSize;
132:                    else
133:                        actualIndex2 %= delayBufferSize;
134:
135:                    // Fetch two samples and interpolate
136:                    int delaySample1 = (int) delayBuffer[actualIndex1];
137:                    int delaySample2 = (int) delayBuffer[actualIndex2];
138:                    int delaySample = (int) (delaySample2 * delta + delaySample1
139:                            * (1.0 - delta));
140:                    // Sum wet and dry portions of the output
141:                    int outputSample = ((inputSample * dryLevel) / 100)
142:                            + ((delaySample * wetLevel) / 100);
143:
144:                    // Clamp output to legal range
145:                    if (outputSample > 32767)
146:                        outputSample = 32767;
147:                    else if (outputSample < -32768)
148:                        outputSample = -32768;
149:
150:                    // Store output sample
151:                    buffer[i] = (short) outputSample;
152:
153:                    // Calculate sample for storage in delay buffer
154:                    inputSample += (delaySample * feedbackLevel * (invertPhase ? -1
155:                            : +1)) / 100;
156:
157:                    // Store sample
158:                    delayBuffer[writeIndex++] = inputSample;
159:
160:                    // Update indices
161:                    readIndex %= delayBufferSize;
162:                    writeIndex %= delayBufferSize;
163:
164:                    // Calculate new sweep value
165:                    if (isSinLFO) {
166:                        // LFO is sinusoidal
167:                        sampleNumber %= sampleRate;
168:                        sweepValue = halfDepthInSamples
169:                                * Math.sin(radiansPerSample * sampleNumber++);
170:
171:                    } else {
172:
173:                        // LFO is triangular
174:                        sweepValue += step;
175:
176:                        // Keep sweep in range
177:                        if ((sweepValue >= halfDepthInSamples)
178:                                || (sweepValue <= -halfDepthInSamples)) {
179:                            // Change direction of sweep
180:                            step *= -1;
181:                        }
182:                    }
183:                }
184:
185:                return len;
186:
187:            }
188:
189:            // Process stereo samples
190:            protected int processStereoSamples(short[] localBuffer,
191:                    short[] buffer, int len) {
192:
193:                // Do the processing
194:                for (int i = 0; i < len / 2; i++) {
195:
196:                    // Fetch the input samples from the local buffer
197:                    int leftInputSample = (int) localBuffer[2 * i];
198:                    int rightInputSample = (int) localBuffer[2 * i + 1];
199:
200:                    // Calculate sample offsets for fetching two samples
201:                    double sampleOffset1 = sweepValue - halfDepthInSamples;
202:                    double sampleOffset2 = sampleOffset1 - 1;
203:
204:                    // Calculate delta for linear interpolation
205:                    double delta = Math
206:                            .abs((int) sampleOffset1 - sampleOffset1);
207:
208:                    int actualIndex1 = readIndex + (int) sampleOffset1;
209:                    int actualIndex2 = readIndex++ + (int) sampleOffset2;
210:                    boolean underflow1 = (actualIndex1 < 0);
211:                    boolean underflow2 = (actualIndex2 < 0);
212:
213:                    // Adjust indices for possible under/over flow
214:                    if (underflow1)
215:                        actualIndex1 += delayBufferSize;
216:                    else
217:                        actualIndex1 %= delayBufferSize;
218:
219:                    if (underflow2)
220:                        actualIndex2 += delayBufferSize;
221:                    else
222:                        actualIndex2 %= delayBufferSize;
223:
224:                    // Fetch two samples and interpolate
225:                    int leftDelaySample1 = (int) leftDelayBuffer[actualIndex1];
226:                    int leftDelaySample2 = (int) leftDelayBuffer[actualIndex2];
227:                    int leftDelaySample = (int) (leftDelaySample2 * delta + leftDelaySample1
228:                            * (1.0 - delta));
229:
230:                    int rightDelaySample1 = (int) rightDelayBuffer[actualIndex1];
231:                    int rightDelaySample2 = (int) rightDelayBuffer[actualIndex2];
232:                    int rightDelaySample = (int) (rightDelaySample2 * delta + rightDelaySample1
233:                            * (1.0 - delta));
234:
235:                    // Sum wet and dry portions of the output
236:                    int leftOutputSample = ((leftInputSample * dryLevel) / 100)
237:                            + ((leftDelaySample * wetLevel) / 100);
238:
239:                    int rightOutputSample = ((rightInputSample * dryLevel) / 100)
240:                            + ((rightDelaySample * wetLevel) / 100);
241:
242:                    // Clamp output to legal range
243:                    if (leftOutputSample > 32767)
244:                        leftOutputSample = 32767;
245:                    else if (leftOutputSample < -32768)
246:                        leftOutputSample = -32768;
247:
248:                    if (rightOutputSample > 32767)
249:                        rightOutputSample = 32767;
250:                    else if (rightOutputSample < -32768)
251:                        rightOutputSample = -32768;
252:
253:                    // Store in output samples
254:                    buffer[2 * i] = (short) leftOutputSample;
255:                    buffer[2 * i + 1] = (short) rightOutputSample;
256:
257:                    // Calculate samples for storage in delay buffer
258:                    leftInputSample += (leftDelaySample * feedbackLevel * (invertPhase ? -1
259:                            : +1)) / 100;
260:                    rightInputSample += (rightDelaySample * feedbackLevel * (invertPhase ? -1
261:                            : +1)) / 100;
262:
263:                    // Store samples
264:                    leftDelayBuffer[writeIndex] = leftInputSample;
265:                    rightDelayBuffer[writeIndex++] = rightInputSample;
266:
267:                    // Update indices
268:                    readIndex %= delayBufferSize;
269:                    writeIndex %= delayBufferSize;
270:
271:                    // Calculate new sweep value
272:                    if (isSinLFO) {
273:                        // LFO is sinusoidal
274:                        sampleNumber %= sampleRate;
275:                        sweepValue = halfDepthInSamples
276:                                * Math.sin(radiansPerSample * sampleNumber++);
277:
278:                    } else {
279:
280:                        // LFO is triangular
281:                        sweepValue += step;
282:
283:                        // Keep sweep in range
284:                        if ((sweepValue >= halfDepthInSamples)
285:                                || (sweepValue <= -halfDepthInSamples)) {
286:                            // Change direction of sweep
287:                            step *= -1;
288:                        }
289:                    }
290:                }
291:                return len;
292:
293:            }
294:
295:            // Set a new delay value from UI
296:            public void setDelayInMs(int delayInMs) {
297:
298:                this .delayInMs = delayInMs;
299:
300:                initializationComplete = false;
301:
302:                doInitialization();
303:
304:            }
305:
306:            // Set a new LFO rate from UI
307:            public void setRateInHz(double rateInHz) {
308:
309:                this .rateInHz = rateInHz;
310:
311:                // Calculate step size
312:                calculateStepSize();
313:
314:            }
315:
316:            // Set a new LFO mode from the UI
317:            public void setLFOMode(boolean isSinLFO) {
318:
319:                this .isSinLFO = isSinLFO;
320:
321:                // Calculate step size
322:                calculateStepSize();
323:
324:            }
325:
326:            // Set a new depth value from UI
327:            public void setDepthLevel(double depthInMs) {
328:
329:                halfDepth = depthInMs / 2.0;
330:
331:                // Calculate step size
332:                calculateStepSize();
333:
334:            }
335:
336:            // Calculate new sweep value from LFO rate and depth
337:            private void calculateStepSize() {
338:
339:                // Calculate half depth in samples
340:                halfDepthInSamples = (halfDepth * sampleRate) / 1000;
341:
342:                sweepValue = 0.0;
343:
344:                // Calculations for triangle wave
345:                double periodInSamples = (1.0 / rateInHz) * sampleRate;
346:                double quarterPeriod = periodInSamples / 4.0;
347:
348:                step = halfDepthInSamples / quarterPeriod;
349:
350:                // Calculations for sin wave
351:                sampleNumber = 0;
352:                radiansPerSample = (2 * Math.PI * rateInHz) / sampleRate;
353:
354:            }
355:
356:            // Set a new dry level value from UI
357:            public void setDryLevel(int dryLevel) {
358:
359:                this .dryLevel = dryLevel;
360:
361:            }
362:
363:            // Set a new wet level value from UI
364:            public void setWetLevel(int wetLevel) {
365:
366:                this .wetLevel = wetLevel;
367:
368:            }
369:
370:            // Set feedback phase from UI
371:            public void setFeedbackPhase(boolean invertPhase) {
372:
373:                this .invertPhase = invertPhase;
374:
375:            }
376:
377:            // Set a new feedback level value from UI
378:            public void setFeedbackLevel(int feedbackLevel) {
379:
380:                this .feedbackLevel = feedbackLevel;
381:
382:            }
383:
384:            // Calculate buffer sizes from delay values
385:            public void doInitialization() {
386:
387:                // See if we have the necessary data to initialize delay
388:                if ((sampleRate != 0) && (numberOfChannels != 0)
389:                        && (!initializationComplete)) {
390:
391:                    // Calculate number of samples required for delay
392:                    int delayOffset = (delayInMs * sampleRate) / 1000;
393:
394:                    if (numberOfChannels == 1) {
395:                        // We're doing a mono signal
396:                        // Calculate buffer size required
397:                        delayBufferSize = AbstractAudio.SAMPLEBUFFERSIZE
398:                                + delayOffset;
399:
400:                        // Allocate new delay buffer
401:                        delayBuffer = new int[delayBufferSize];
402:
403:                        // Initialize indices
404:                        // Index where dry sample is written
405:                        writeIndex = 0;
406:
407:                        // Index where wet sample is read
408:                        readIndex = AbstractAudio.SAMPLEBUFFERSIZE;
409:
410:                    } else {
411:
412:                        // We're doing a stereo signal
413:                        // Calculate buffer size required
414:                        int halfBufferSize = AbstractAudio.SAMPLEBUFFERSIZE / 2;
415:                        delayBufferSize = halfBufferSize + delayOffset;
416:
417:                        // Allocate new delay buffers
418:                        leftDelayBuffer = new int[delayBufferSize];
419:                        rightDelayBuffer = new int[delayBufferSize];
420:
421:                        // Initialize indices
422:                        // Index where dry sample is written
423:                        writeIndex = 0;
424:
425:                        // Index where wet sample is read
426:                        readIndex = halfBufferSize;
427:                    }
428:                    // Indicate initialization is complete
429:                    initializationComplete = true;
430:                }
431:
432:            }
433:
434:            public void minMaxSamplingRate(int min, int max, int preferred) {
435:
436:                super .minMaxSamplingRate(min, max, preferred);
437:                sampleRate = preferred;
438:                doInitialization();
439:                calculateStepSize();
440:
441:            }
442:
443:            // Negotiate the number of channels
444:            public void minMaxChannels(int min, int max, int preferred) {
445:
446:                super.minMaxChannels(min, max, preferred);
447:                numberOfChannels = preferred;
448:
449:            }
450:
451:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.