Source Code Cross Referenced for PitchShifter.java in  » 6.0-JDK-Modules » java-3d » com » db » media » audio » dsp » processors » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » com.db.media.audio.dsp.processors 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright (c) 2000 Silvere Martin-Michiellot All Rights Reserved.
003:         *
004:         * Silvere Martin-Michiellot grants you ("Licensee") a non-exclusive,
005:         * royalty free, license to use, modify and redistribute this
006:         * software in source and binary code form,
007:         * provided that i) this copyright notice and license appear on all copies of
008:         * the software; and ii) Licensee does not utilize the software in a manner
009:         * which is disparaging to Silvere Martin-Michiellot.
010:         *
011:         * This software is provided "AS IS," without a warranty of any kind. ALL
012:         * EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY
013:         * IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
014:         * NON-INFRINGEMENT, ARE HEREBY EXCLUDED. Silvere Martin-Michiellot
015:         * AND ITS LICENSORS SHALL NOT BE LIABLE FOR ANY DAMAGES
016:         * SUFFERED BY LICENSEE AS A RESULT OF USING, MODIFYING
017:         * OR DISTRIBUTING THE SOFTWARE OR ITS DERIVATIVES. IN NO EVENT WILL
018:         * Silvere Martin-Michiellot OR ITS LICENSORS BE LIABLE
019:         * FOR ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT,
020:         * INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER
021:         * CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF
022:         * OR INABILITY TO USE SOFTWARE, EVEN IF Silvere Martin-Michiellot HAS BEEN
023:         * ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
024:         *
025:         * This software is not designed or intended for use in on-line control of
026:         * aircraft, air traffic, aircraft navigation or aircraft communications; or in
027:         * the design, construction, operation or maintenance of any nuclear
028:         * facility. Licensee represents and warrants that it will not use or
029:         * redistribute the Software for such purposes.
030:         *
031:         */
032:
033:        // This code is repackaged after the code from Craig A. Lindley, from Digital Audio with Java
034:        // Site ftp://ftp.prenhall.com/pub/ptr/professional_computer_science.w-022/digital_audio/
035:        // Email
036:        package com.db.media.audio.dsp.processors;
037:
038:        /*
039:         The algorithm for this pitch shifter was adapted from the
040:         article titled "Examining Audio DSP Algorithms" by
041:         Dennis Cronin published in Dr. Dobb's Journal.
042:         */
043:
044:        public class PitchShifter extends AbstractAudio {
045:
046:            // Fixed delay period with which to do pitch shifting
047:            private static final int FIXEDDELAYINMS = 100;
048:            // Fade in/out times
049:            private static final int CROSSFADETIMEINMS = 12;
050:            // Constant by which one tone differs from the next when the
051:            // interval is a halftone.
052:            private static final double twelvethRootOfTwo = Math.pow(2,
053:                    1.0 / 12.0);
054:
055:            // Private class data
056:            private boolean initializationComplete;
057:            private boolean sweepUp;
058:            private double step;
059:            private double sweep;
060:            private int dryLevel;
061:            private int wetLevel;
062:            private int feedbackLevel;
063:
064:            private int sampleRate = 0;
065:            private int numberOfChannels = 0;
066:            private int delayBufferSize = 0;
067:            private short[] localBuffer = null;
068:            private long[] delayBuffer = null;
069:            private int readIndexALow;
070:            private int readIndexAHigh;
071:            private int readIndexBLow;
072:            private int readIndexBHigh;
073:            private int writeIndex;
074:            private int numberOfDelaySamples;
075:            private int numberOfCrossFadeSamples;
076:            private int crossFadeCount;
077:            private int activeSampleCount;
078:            private int activeCount;
079:            private boolean channelA;
080:            private double blendA;
081:            private double blendB;
082:
083:            private double[] fadeIn;
084:            private double[] fadeOut;
085:            private double[] fadeA;
086:            private double[] fadeB;
087:
088:            // Class constructor
089:            public PitchShifter() {
090:
091:                super ("Pitch Shifter", AbstractAudio.PROCESSOR);
092:
093:                // Initialize various parameters
094:                initializationComplete = false; // Initialization not yet performed
095:                sweepUp = true; // Assume upward change in frequency
096:                sweep = 0.0; // Initial value for sweep rate
097:                channelA = true; // Setup to use channel A sweep
098:                blendA = 1.0; // Blend values for the two delay channels
099:                blendB = 0.0;
100:
101:                // Allocate local sample buffer
102:                localBuffer = new short[AbstractAudio.SAMPLEBUFFERSIZE];
103:
104:            }
105:
106:            // Process the samples that pass thru this effect
107:            public int getSamples(short[] buffer, int length) {
108:
109:                // Don't perform processing until initialization is
110:                // complete and bypass is not active.
111:                if (getByPass() || !initializationComplete)
112:                    return previous.getSamples(buffer, length);
113:
114:                // Read number of samples requested from previous stage
115:                int len = previous.getSamples(localBuffer, length);
116:
117:                double delaySampleA, delaySampleB;
118:
119:                // Do the processing over the new buffer of samples
120:                for (int i = 0; i < len; i++) {
121:
122:                    // Get a sample to process
123:                    long inputSample = localBuffer[i];
124:
125:                    // Grab four samples at a time. This is required for
126:                    // interpolation and blending.
127:                    long dsALow = delayBuffer[readIndexALow];
128:                    long dsAHigh = delayBuffer[readIndexAHigh];
129:                    long dsBLow = delayBuffer[readIndexBLow];
130:                    long dsBHigh = delayBuffer[readIndexBHigh];
131:
132:                    // Do the linear interpolation
133:                    if (sweepUp) {
134:                        delaySampleA = (dsAHigh * sweep)
135:                                + (dsALow * (1.0 - sweep));
136:                        delaySampleB = (dsBHigh * sweep)
137:                                + (dsBLow * (1.0 - sweep));
138:                    } else {
139:                        delaySampleA = (dsAHigh * (1.0 - sweep) + (dsALow * sweep));
140:                        delaySampleB = (dsBHigh * (1.0 - sweep) + (dsBLow * sweep));
141:                    }
142:
143:                    // Combine delay channels A and B with appropriate blending
144:                    double outputSample = (delaySampleA * blendA)
145:                            + (delaySampleB * blendB);
146:
147:                    // Store sample in delay buffer
148:                    delayBuffer[writeIndex] = (long) (inputSample + ((outputSample * feedbackLevel) / 100));
149:
150:                    // Update write index
151:                    writeIndex = (writeIndex + 1) % delayBufferSize;
152:
153:                    // Prepare sample for output by combining wet and dry
154:                    // values
155:                    outputSample = ((inputSample * dryLevel) / 100)
156:                            + ((outputSample * wetLevel) / 100);
157:
158:                    // Clamp output to legal range
159:                    if (outputSample > 32767)
160:                        outputSample = 32767;
161:                    if (outputSample < -32768)
162:                        outputSample = -32768;
163:
164:                    // Store output sample in outgoing buffer
165:                    buffer[i] = (short) outputSample;
166:
167:                    // Update cross fade blending values each sample interval
168:                    if (crossFadeCount != 0) {
169:                        crossFadeCount--;
170:
171:                        // Get new blending values for both channels
172:                        blendA = fadeA[crossFadeCount];
173:                        blendB = fadeB[crossFadeCount];
174:                    }
175:
176:                    // Update sweep value for each pass if processing
177:                    // mono signal and every other pass if processing
178:                    // stereo.
179:                    if ((numberOfChannels == 1) || ((i + 1) % 2 == 0))
180:                        sweep += step;
181:
182:                    if (sweepUp) {
183:                        // Upward frequency change
184:
185:                        // Advance indices to reduce delay
186:                        readIndexALow = readIndexAHigh;
187:                        readIndexAHigh = (readIndexAHigh + 1) % delayBufferSize;
188:                        readIndexBLow = readIndexBHigh;
189:                        readIndexBHigh = (readIndexBHigh + 1) % delayBufferSize;
190:
191:                        // Check for overflow
192:                        if (sweep < 1.0) {
193:                            // No overflow, continue with next sample
194:                            continue;
195:                        }
196:
197:                        // Octave exceeded bump ptrs again
198:                        sweep = 0.0;
199:                        readIndexALow = readIndexAHigh;
200:                        readIndexAHigh = (readIndexAHigh + 1) % delayBufferSize;
201:                        readIndexBLow = readIndexBHigh;
202:                        readIndexBHigh = (readIndexBHigh + 1) % delayBufferSize;
203:
204:                        // See if it is time to switch to other delay channel
205:                        if (activeCount-- == 0) {
206:                            // Reset fade in/out count
207:                            crossFadeCount = numberOfCrossFadeSamples;
208:                            activeCount = activeSampleCount;
209:                            if (channelA) {
210:                                channelA = false;
211:                                readIndexBHigh = (writeIndex + AbstractAudio.SAMPLEBUFFERSIZE)
212:                                        % delayBufferSize;
213:                                // Swap blend coefficient arrays
214:                                fadeA = fadeOut;
215:                                fadeB = fadeIn;
216:                            } else {
217:                                channelA = true;
218:                                readIndexAHigh = (writeIndex + AbstractAudio.SAMPLEBUFFERSIZE)
219:                                        % delayBufferSize;
220:                                // Swap blend coefficient arrays
221:                                fadeA = fadeIn;
222:                                fadeB = fadeOut;
223:                            }
224:                        }
225:
226:                    } else {
227:                        // Downward frequency change
228:
229:                        // Check for overflow
230:                        if (sweep < 1.0) {
231:                            // No overflow, advance indices
232:                            readIndexALow = readIndexAHigh;
233:                            readIndexAHigh = (readIndexAHigh + 1)
234:                                    % delayBufferSize;
235:                            readIndexBLow = readIndexBHigh;
236:                            readIndexBHigh = (readIndexBHigh + 1)
237:                                    % delayBufferSize;
238:
239:                            // Continue with processing the next sample
240:                            continue;
241:                        }
242:                        // Octave exceeded don't bump indices so the delay
243:                        // is increased
244:                        sweep = 0.0;
245:
246:                        // See if it is time to switch to other delay channel
247:                        if (activeCount-- == 0) {
248:                            // Reset fade in/out count
249:                            crossFadeCount = numberOfCrossFadeSamples;
250:                            activeCount = activeSampleCount;
251:                            if (channelA) {
252:                                channelA = false;
253:                                readIndexBHigh = (writeIndex + AbstractAudio.SAMPLEBUFFERSIZE)
254:                                        % delayBufferSize;
255:                                // Swap blend coefficient arrays
256:                                fadeA = fadeOut;
257:                                fadeB = fadeIn;
258:                            } else {
259:                                channelA = true;
260:                                readIndexAHigh = (writeIndex + AbstractAudio.SAMPLEBUFFERSIZE)
261:                                        % delayBufferSize;
262:                                // Swap blend coefficient arrays
263:                                fadeA = fadeIn;
264:                                fadeB = fadeOut;
265:                            }
266:                        }
267:                    }
268:                }
269:
270:                return len;
271:
272:            }
273:
274:            // Called when the user changes the dry level.
275:            public void setDryLevel(int dryLevel) {
276:
277:                // Value in the range 0..100
278:                this .dryLevel = dryLevel;
279:
280:            }
281:
282:            // Called when the user changes the wet level.
283:            public void setWetLevel(int wetLevel) {
284:
285:                // Value in the range 0..100
286:                this .wetLevel = wetLevel;
287:
288:            }
289:
290:            // Called when the user changes the feedback level.
291:            public void setFeedbackLevel(int feedbackLevel) {
292:
293:                // Value in the range 0..100
294:                this .feedbackLevel = feedbackLevel;
295:
296:            }
297:
298:            // Called when the user changes the pitch shift value
299:            public void setPitchShift(int pitchShift) {
300:
301:                // Values are in half steps (semitones) in the
302:                // range -12..0..+12 corresponding to -/+ 1 octave for
303:                // a range of 2 octaves.
304:
305:                // Determine which direction the sweep is going
306:                sweepUp = (pitchShift >= 0);
307:
308:                setIndices();
309:
310:                double newStep = 1.0;
311:
312:                // If pitch shift is 0 short circuit calculations
313:                if (pitchShift == 0)
314:                    step = 0;
315:
316:                else {
317:                    // Step is rate at which samples read out
318:                    for (int i = 0; i < Math.abs(pitchShift); i++) {
319:                        if (pitchShift > 0)
320:                            newStep *= twelvethRootOfTwo;
321:                        else
322:                            newStep /= twelvethRootOfTwo;
323:                    }
324:                    step = Math.abs(newStep - 1.0);
325:                }
326:                // Reset the following values whenever pitch shift value changes
327:                sweep = 0.0;
328:                crossFadeCount = 0;
329:                activeSampleCount = numberOfDelaySamples
330:                        - (int) (numberOfCrossFadeSamples * (newStep - 1.0) - 2);
331:
332:            }
333:
334:            // Set read/write indices depending upon audio format and
335:            // frequency change direction
336:            private void setIndices() {
337:
338:                // Index where dry sample is written
339:                writeIndex = 0;
340:                readIndexBLow = 0;
341:                readIndexBHigh = 0;
342:
343:                if (sweepUp) {
344:                    // Sweeping upward, start at max delay
345:                    readIndexALow = AbstractAudio.SAMPLEBUFFERSIZE;
346:
347:                } else {
348:
349:                    // Sweeping downward, start at min delay
350:                    if (numberOfChannels == 1)
351:                        readIndexALow = delayBufferSize - 2;
352:                    else
353:                        readIndexALow = delayBufferSize - 4;
354:                }
355:                // Initialize other read ptr
356:                if (numberOfChannels == 1)
357:                    readIndexAHigh = readIndexALow + 1;
358:                else
359:                    readIndexAHigh = readIndexALow + 2;
360:
361:            }
362:
363:            // Do necessary initialization as required for pitch shifting
364:            private void doInitialization() {
365:
366:                // See if we have the necessary data to initialize delay
367:                if ((sampleRate != 0) && (numberOfChannels != 0)
368:                        && (!initializationComplete)) {
369:
370:                    // Allocate delay buffer for the fixed delay time
371:                    numberOfDelaySamples = (FIXEDDELAYINMS * sampleRate * numberOfChannels) / 1000;
372:
373:                    // Total buffer size
374:                    delayBufferSize = AbstractAudio.SAMPLEBUFFERSIZE
375:                            + numberOfDelaySamples;
376:
377:                    // Allocate new delay buffer
378:                    delayBuffer = new long[delayBufferSize];
379:
380:                    // Initialize indices in the delay buffer
381:                    setIndices();
382:
383:                    // Calculate the number of cross fade samples
384:                    numberOfCrossFadeSamples = (CROSSFADETIMEINMS * sampleRate) / 1000;
385:
386:                    // Allocate arrays for cross fade coefficients
387:                    fadeIn = new double[numberOfCrossFadeSamples];
388:                    fadeOut = new double[numberOfCrossFadeSamples];
389:
390:                    // Fill in the arrays with fade in/out values. Sin and Cos
391:                    // values are used for smooth results.
392:                    for (int i = 0; i < numberOfCrossFadeSamples; i++) {
393:                        double angle = (i * Math.PI)
394:                                / (2.0 * numberOfCrossFadeSamples);
395:                        fadeIn[i] = Math.cos(angle);
396:                        fadeOut[i] = Math.sin(angle);
397:                    }
398:                    // Indicate initialization is complete
399:                    initializationComplete = true;
400:                }
401:
402:            }
403:
404:            // Negotiate the sample rate
405:            public void minMaxSamplingRate(int min, int max, int preferred) {
406:
407:                super .minMaxSamplingRate(min, max, preferred);
408:                sampleRate = preferred;
409:                doInitialization();
410:
411:            }
412:
413:            // Negotiate the number of channels
414:            public void minMaxChannels(int min, int max, int preferred) {
415:
416:                super.minMaxChannels(min, max, preferred);
417:                numberOfChannels = preferred;
418:
419:            }
420:
421:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.