Source Code Cross Referenced for Numerics.java in  » 6.0-JDK-Modules » java-3d » com » sun » j3d » utils » geometry » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » 6.0 JDK Modules » java 3d » com.sun.j3d.utils.geometry 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * $RCSfile: Numerics.java,v $
003:         *
004:         * Copyright (c) 2007 Sun Microsystems, Inc. All rights reserved.
005:         *
006:         * Redistribution and use in source and binary forms, with or without
007:         * modification, are permitted provided that the following conditions
008:         * are met:
009:         *
010:         * - Redistribution of source code must retain the above copyright
011:         *   notice, this list of conditions and the following disclaimer.
012:         *
013:         * - Redistribution in binary form must reproduce the above copyright
014:         *   notice, this list of conditions and the following disclaimer in
015:         *   the documentation and/or other materials provided with the
016:         *   distribution.
017:         *
018:         * Neither the name of Sun Microsystems, Inc. or the names of
019:         * contributors may be used to endorse or promote products derived
020:         * from this software without specific prior written permission.
021:         *
022:         * This software is provided "AS IS," without a warranty of any
023:         * kind. ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND
024:         * WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY,
025:         * FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE HEREBY
026:         * EXCLUDED. SUN MICROSYSTEMS, INC. ("SUN") AND ITS LICENSORS SHALL
027:         * NOT BE LIABLE FOR ANY DAMAGES SUFFERED BY LICENSEE AS A RESULT OF
028:         * USING, MODIFYING OR DISTRIBUTING THIS SOFTWARE OR ITS
029:         * DERIVATIVES. IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR
030:         * ANY LOST REVENUE, PROFIT OR DATA, OR FOR DIRECT, INDIRECT, SPECIAL,
031:         * CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND
032:         * REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF THE USE OF OR
033:         * INABILITY TO USE THIS SOFTWARE, EVEN IF SUN HAS BEEN ADVISED OF THE
034:         * POSSIBILITY OF SUCH DAMAGES.
035:         *
036:         * You acknowledge that this software is not designed, licensed or
037:         * intended for use in the design, construction, operation or
038:         * maintenance of any nuclear facility.
039:         *
040:         * $Revision: 1.4 $
041:         * $Date: 2007/02/09 17:20:20 $
042:         * $State: Exp $
043:         */
044:
045:        // ----------------------------------------------------------------------
046:        //
047:        // The reference to Fast Industrial Strength Triangulation (FIST) code
048:        // in this release by Sun Microsystems is related to Sun's rewrite of
049:        // an early version of FIST. FIST was originally created by Martin
050:        // Held and Joseph Mitchell at Stony Brook University and is
051:        // incorporated by Sun under an agreement with The Research Foundation
052:        // of SUNY (RFSUNY). The current version of FIST is available for
053:        // commercial use under a license agreement with RFSUNY on behalf of
054:        // the authors and Stony Brook University.  Please contact the Office
055:        // of Technology Licensing at Stony Brook, phone 631-632-9009, for
056:        // licensing information.
057:        //
058:        // ----------------------------------------------------------------------
059:        package com.sun.j3d.utils.geometry;
060:
061:        import java.io.*;
062:        import java.util.*;
063:        import javax.vecmath.*;
064:
065:        class Numerics {
066:
067:            static double max3(double a, double b, double c) {
068:                return (((a) > (b)) ? (((a) > (c)) ? (a) : (c))
069:                        : (((b) > (c)) ? (b) : (c)));
070:            }
071:
072:            static double min3(double a, double b, double c) {
073:                return (((a) < (b)) ? (((a) < (c)) ? (a) : (c))
074:                        : (((b) < (c)) ? (b) : (c)));
075:            }
076:
077:            static boolean lt(double a, double eps) {
078:                return ((a) < -eps);
079:            }
080:
081:            static boolean le(double a, double eps) {
082:                return (a <= eps);
083:            }
084:
085:            static boolean ge(double a, double eps) {
086:                return (!((a) <= -eps));
087:            }
088:
089:            static boolean eq(double a, double eps) {
090:                return (((a) <= eps) && !((a) < -eps));
091:            }
092:
093:            static boolean gt(double a, double eps) {
094:                return !((a) <= eps);
095:            }
096:
097:            static double baseLength(Tuple2f u, Tuple2f v) {
098:                double x, y;
099:                x = (v).x - (u).x;
100:                y = (v).y - (u).y;
101:                return Math.abs(x) + Math.abs(y);
102:            }
103:
104:            static double sideLength(Tuple2f u, Tuple2f v) {
105:                double x, y;
106:                x = (v).x - (u).x;
107:                y = (v).y - (u).y;
108:                return x * x + y * y;
109:            }
110:
111:            /**
112:             * This checks whether  i3,  which is collinear with  i1, i2,  is
113:             * between  i1, i2. note that we rely on the lexicographic sorting of the
114:             * points!
115:             */
116:            static boolean inBetween(int i1, int i2, int i3) {
117:                return ((i1 <= i3) && (i3 <= i2));
118:            }
119:
120:            static boolean strictlyInBetween(int i1, int i2, int i3) {
121:                return ((i1 < i3) && (i3 < i2));
122:            }
123:
124:            /**
125:             * this method computes the determinant  det(points[i],points[j],points[k])
126:             * in a consistent way.
127:             */
128:            static double stableDet2D(Triangulator triRef, int i, int j, int k) {
129:                double det;
130:                Point2f numericsHP, numericsHQ, numericsHR;
131:
132:                //      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
133:                // (triRef.inPointsList(k)==false))
134:                //  System.out.println("Numerics.stableDet2D Not inPointsList " + i + " " + j
135:                //		     + " " + k);
136:
137:                if ((i == j) || (i == k) || (j == k)) {
138:                    det = 0.0;
139:                } else {
140:                    numericsHP = triRef.points[i];
141:                    numericsHQ = triRef.points[j];
142:                    numericsHR = triRef.points[k];
143:
144:                    if (i < j) {
145:                        if (j < k) /* i < j < k  */
146:                            det = Basic.det2D(numericsHP, numericsHQ,
147:                                    numericsHR);
148:                        else if (i < k) /* i < k < j  */
149:                            det = -Basic.det2D(numericsHP, numericsHR,
150:                                    numericsHQ);
151:                        else
152:                            /* k < i < j  */
153:                            det = Basic.det2D(numericsHR, numericsHP,
154:                                    numericsHQ);
155:                    } else {
156:                        if (i < k) /* j < i < k  */
157:                            det = -Basic.det2D(numericsHQ, numericsHP,
158:                                    numericsHR);
159:                        else if (j < k) /* j < k < i  */
160:                            det = Basic.det2D(numericsHQ, numericsHR,
161:                                    numericsHP);
162:                        else
163:                            /* k < j < i */
164:                            det = -Basic.det2D(numericsHR, numericsHQ,
165:                                    numericsHP);
166:                    }
167:                }
168:
169:                return det;
170:            }
171:
172:            /**
173:             * Returns the orientation of the triangle.
174:             * @return +1 if the points  i, j, k are given in CCW order;
175:             * -1 if the points  i, j, k are given in CW order;
176:             * 0 if the points  i, j, k are collinear.
177:             */
178:            static int orientation(Triangulator triRef, int i, int j, int k) {
179:                int ori;
180:                double numericsHDet;
181:                numericsHDet = stableDet2D(triRef, i, j, k);
182:                // System.out.println("orientation : numericsHDet " + numericsHDet);
183:                if (lt(numericsHDet, triRef.epsilon))
184:                    ori = -1;
185:                else if (gt(numericsHDet, triRef.epsilon))
186:                    ori = 1;
187:                else
188:                    ori = 0;
189:                return ori;
190:            }
191:
192:            /**
193:             * This method checks whether  l  is in the cone defined by  i, j  and  j, k
194:             */
195:            static boolean isInCone(Triangulator triRef, int i, int j, int k,
196:                    int l, boolean convex) {
197:                boolean flag;
198:                int numericsHOri1, numericsHOri2;
199:
200:                //      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
201:                //	 (triRef.inPointsList(k)==false)||(triRef.inPointsList(l)==false))
202:                //	   System.out.println("Numerics.isInCone Not inPointsList " + i + " " + j
203:                //	      + " " + k + " " + l);
204:
205:                flag = true;
206:                if (convex) {
207:                    if (i != j) {
208:                        numericsHOri1 = orientation(triRef, i, j, l);
209:                        // System.out.println("isInCone : i != j, numericsHOri1 = " + numericsHOri1);
210:                        if (numericsHOri1 < 0)
211:                            flag = false;
212:                        else if (numericsHOri1 == 0) {
213:                            if (i < j) {
214:                                if (!inBetween(i, j, l))
215:                                    flag = false;
216:                            } else {
217:                                if (!inBetween(j, i, l))
218:                                    flag = false;
219:                            }
220:                        }
221:                    }
222:                    if ((j != k) && (flag == true)) {
223:                        numericsHOri2 = orientation(triRef, j, k, l);
224:                        // System.out.println("isInCone : ((j != k)  &&  (flag == true)), numericsHOri2 = " +
225:                        // numericsHOri2);
226:                        if (numericsHOri2 < 0)
227:                            flag = false;
228:                        else if (numericsHOri2 == 0) {
229:                            if (j < k) {
230:                                if (!inBetween(j, k, l))
231:                                    flag = false;
232:                            } else {
233:                                if (!inBetween(k, j, l))
234:                                    flag = false;
235:                            }
236:                        }
237:                    }
238:                } else {
239:                    numericsHOri1 = orientation(triRef, i, j, l);
240:                    if (numericsHOri1 <= 0) {
241:                        numericsHOri2 = orientation(triRef, j, k, l);
242:                        if (numericsHOri2 < 0)
243:                            flag = false;
244:                    }
245:                }
246:                return flag;
247:            }
248:
249:            /**
250:             * Returns convex angle flag.
251:             * @return 0 ... if angle is 180 degrees <br>
252:             *         1 ... if angle between 0 and 180 degrees <br>
253:             *         2 ... if angle is 0 degrees <br>
254:             *        -1 ... if angle between 180 and 360 degrees <br>
255:             *        -2 ... if angle is 360 degrees <br>
256:             */
257:            static int isConvexAngle(Triangulator triRef, int i, int j, int k,
258:                    int ind) {
259:                int angle;
260:                double numericsHDot;
261:                int numericsHOri1;
262:                Point2f numericsHP, numericsHQ;
263:
264:                //      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
265:                //	 (triRef.inPointsList(k)==false))
266:                //	  System.out.println("Numerics.isConvexAngle: Not inPointsList " + i + " " + j
267:                //			     + " " + k);
268:
269:                if (i == j) {
270:                    if (j == k) {
271:                        // all three vertices are identical; we set the angle to 1 in
272:                        // order to enable clipping of  j.
273:                        return 1;
274:                    } else {
275:                        // two of the three vertices are identical; we set the angle to 1
276:                        // in order to enable clipping of  j.
277:                        return 1;
278:                    }
279:                } else if (j == k) {
280:                    // two vertices are identical. we could either determine the angle
281:                    // by means of yet another lengthy analysis, or simply set the
282:                    // angle to -1. using -1 means to err on the safe side, as all the
283:                    // incarnations of this vertex will be clipped right at the start
284:                    // of the ear-clipping algorithm. thus, eventually there will be no
285:                    // other duplicates at this vertex position, and the regular
286:                    // classification of angles will yield the correct answer for j.
287:                    return -1;
288:                } else {
289:                    numericsHOri1 = orientation(triRef, i, j, k);
290:                    // System.out.println("i " + i + " j " + j + " k " + k + " ind " + ind +
291:                    //		   ". In IsConvexAngle numericsHOri1 is " +
292:                    //		   numericsHOri1);
293:                    if (numericsHOri1 > 0) {
294:                        angle = 1;
295:                    } else if (numericsHOri1 < 0) {
296:                        angle = -1;
297:                    } else {
298:                        // 0, 180, or 360 degrees.
299:                        numericsHP = new Point2f();
300:                        numericsHQ = new Point2f();
301:                        Basic.vectorSub2D(triRef.points[i], triRef.points[j],
302:                                numericsHP);
303:                        Basic.vectorSub2D(triRef.points[k], triRef.points[j],
304:                                numericsHQ);
305:                        numericsHDot = Basic.dotProduct2D(numericsHP,
306:                                numericsHQ);
307:                        if (numericsHDot < 0.0) {
308:                            // 180 degrees.
309:                            angle = 0;
310:                        } else {
311:                            // 0 or 360 degrees? this cannot be judged locally, and more
312:                            // work is needed.
313:
314:                            angle = spikeAngle(triRef, i, j, k, ind);
315:                            // System.out.println("SpikeAngle return is "+ angle);
316:                        }
317:                    }
318:                }
319:                return angle;
320:            }
321:
322:            /**
323:             * This method checks whether point  i4  is inside of or on the boundary
324:             * of the triangle  i1, i2, i3.
325:             */
326:            static boolean pntInTriangle(Triangulator triRef, int i1, int i2,
327:                    int i3, int i4) {
328:                boolean inside;
329:                int numericsHOri1;
330:
331:                inside = false;
332:                numericsHOri1 = orientation(triRef, i2, i3, i4);
333:                if (numericsHOri1 >= 0) {
334:                    numericsHOri1 = orientation(triRef, i1, i2, i4);
335:                    if (numericsHOri1 >= 0) {
336:                        numericsHOri1 = orientation(triRef, i3, i1, i4);
337:                        if (numericsHOri1 >= 0)
338:                            inside = true;
339:                    }
340:                }
341:                return inside;
342:            }
343:
344:            /**
345:             * This method checks whether point  i4  is inside of or on the boundary
346:             * of the triangle  i1, i2, i3. it also returns a classification if  i4  is
347:             * on the boundary of the triangle (except for the edge  i2, i3).
348:             */
349:            static boolean vtxInTriangle(Triangulator triRef, int i1, int i2,
350:                    int i3, int i4, int[] type) {
351:                boolean inside;
352:                int numericsHOri1;
353:
354:                inside = false;
355:                numericsHOri1 = orientation(triRef, i2, i3, i4);
356:                if (numericsHOri1 >= 0) {
357:                    numericsHOri1 = orientation(triRef, i1, i2, i4);
358:                    if (numericsHOri1 > 0) {
359:                        numericsHOri1 = orientation(triRef, i3, i1, i4);
360:                        if (numericsHOri1 > 0) {
361:                            inside = true;
362:                            type[0] = 0;
363:                        } else if (numericsHOri1 == 0) {
364:                            inside = true;
365:                            type[0] = 1;
366:                        }
367:                    } else if (numericsHOri1 == 0) {
368:                        numericsHOri1 = orientation(triRef, i3, i1, i4);
369:                        if (numericsHOri1 > 0) {
370:                            inside = true;
371:                            type[0] = 2;
372:                        } else if (numericsHOri1 == 0) {
373:                            inside = true;
374:                            type[0] = 3;
375:                        }
376:                    }
377:                }
378:                return inside;
379:            }
380:
381:            /**
382:             * Checks whether the line segments  i1, i2  and  i3, i4  intersect. no
383:             * intersection is reported if they intersect at a common vertex.
384:             * the function assumes that  i1 <= i2  and  i3 <= i4. if  i3  or  i4  lies
385:             * on  i1, i2  then an intersection is reported, but no intersection is
386:             * reported if  i1  or  i2  lies on  i3, i4. this function is not symmetric!
387:             */
388:            static boolean segIntersect(Triangulator triRef, int i1, int i2,
389:                    int i3, int i4, int i5) {
390:                int ori1, ori2, ori3, ori4;
391:
392:                //      if((triRef.inPointsList(i1)==false)||(triRef.inPointsList(i2)==false)||
393:                //	 (triRef.inPointsList(i3)==false)||(triRef.inPointsList(i4)==false))
394:                //	System.out.println("Numerics.segIntersect Not inPointsList " + i1 + " " + i2
395:                //			   + " " + i3 + " " + i4);
396:                //
397:                //      if((i1 > i2) || (i3 > i4))
398:                //	System.out.println("Numerics.segIntersect i1>i2 or i3>i4 " + i1 + " " + i2
399:                //      		   + " " + i3 + " " + i4);
400:
401:                if ((i1 == i2) || (i3 == i4))
402:                    return false;
403:                if ((i1 == i3) && (i2 == i4))
404:                    return true;
405:
406:                if ((i3 == i5) || (i4 == i5))
407:                    ++(triRef.identCntr);
408:
409:                ori3 = orientation(triRef, i1, i2, i3);
410:                ori4 = orientation(triRef, i1, i2, i4);
411:                if (((ori3 == 1) && (ori4 == 1))
412:                        || ((ori3 == -1) && (ori4 == -1)))
413:                    return false;
414:
415:                if (ori3 == 0) {
416:                    if (strictlyInBetween(i1, i2, i3))
417:                        return true;
418:                    if (ori4 == 0) {
419:                        if (strictlyInBetween(i1, i2, i4))
420:                            return true;
421:                    } else
422:                        return false;
423:                } else if (ori4 == 0) {
424:                    if (strictlyInBetween(i1, i2, i4))
425:                        return true;
426:                    else
427:                        return false;
428:                }
429:
430:                ori1 = orientation(triRef, i3, i4, i1);
431:                ori2 = orientation(triRef, i3, i4, i2);
432:                if (((ori1 <= 0) && (ori2 <= 0))
433:                        || ((ori1 >= 0) && (ori2 >= 0)))
434:                    return false;
435:
436:                return true;
437:            }
438:
439:            /**
440:             * this function computes a quality measure of a triangle  i, j, k.
441:             * it returns the ratio  `base / height', where   base  is the length of the
442:             * longest side of the triangle, and   height  is the normal distance
443:             * between the vertex opposite of the base side and the base side. (as
444:             * usual, we again use the l1-norm for distances.)
445:             */
446:            static double getRatio(Triangulator triRef, int i, int j, int k) {
447:                double area, a, b, c, base, ratio;
448:                Point2f p, q, r;
449:
450:                //      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
451:                //	 (triRef.inPointsList(k)==false))
452:                //	System.out.println("Numerics.getRatio: Not inPointsList " + i + " " + j
453:                //			   + " " + k);
454:
455:                p = triRef.points[i];
456:                q = triRef.points[j];
457:                r = triRef.points[k];
458:
459:                a = baseLength(p, q);
460:                b = baseLength(p, r);
461:                c = baseLength(r, q);
462:                base = max3(a, b, c);
463:
464:                if ((10.0 * a) < Math.min(b, c))
465:                    return 0.1;
466:
467:                area = stableDet2D(triRef, i, j, k);
468:                if (lt(area, triRef.epsilon)) {
469:                    area = -area;
470:                } else if (!gt(area, triRef.epsilon)) {
471:                    if (base > a)
472:                        return 0.1;
473:                    else
474:                        return Double.MAX_VALUE;
475:                }
476:
477:                ratio = base * base / area;
478:
479:                if (ratio < 10.0)
480:                    return ratio;
481:                else {
482:                    if (a < base)
483:                        return 0.1;
484:                    else
485:                        return ratio;
486:                }
487:            }
488:
489:            static int spikeAngle(Triangulator triRef, int i, int j, int k,
490:                    int ind) {
491:                int ind1, ind2, ind3;
492:                int i1, i2, i3;
493:
494:                //      if((triRef.inPointsList(i)==false)||(triRef.inPointsList(j)==false)||
495:                //	 (triRef.inPointsList(k)==false))
496:                //	System.out.println("Numerics.spikeAngle: Not inPointsList " + i + " " + j
497:                //			   + " " + k);
498:
499:                ind2 = ind;
500:                i2 = triRef.fetchData(ind2);
501:
502:                //      if(i2 != j)
503:                //	System.out.println("Numerics.spikeAngle: i2 != j " + i2 + " " + j );
504:
505:                ind1 = triRef.fetchPrevData(ind2);
506:                i1 = triRef.fetchData(ind1);
507:
508:                //      if(i1 != i)
509:                //	System.out.println("Numerics.spikeAngle: i1 != i " + i1 + " " + i );
510:
511:                ind3 = triRef.fetchNextData(ind2);
512:                i3 = triRef.fetchData(ind3);
513:
514:                //      if(i3 != k)
515:                //	System.out.println("Numerics.spikeAngle: i3 != k " + i3 + " " + k );
516:
517:                return recSpikeAngle(triRef, i, j, k, ind1, ind3);
518:            }
519:
520:            static int recSpikeAngle(Triangulator triRef, int i1, int i2,
521:                    int i3, int ind1, int ind3) {
522:                int ori, ori1, ori2, i0, ii1, ii2;
523:                Point2f pq, pr;
524:                double dot;
525:
526:                if (ind1 == ind3) {
527:                    // all points are collinear???  well, then it does not really matter
528:                    // which angle is returned. perhaps, -2 is the best bet as my code
529:                    // likely regards this contour as a hole.
530:                    return -2;
531:                }
532:
533:                if (i1 != i3) {
534:                    if (i1 < i2) {
535:                        ii1 = i1;
536:                        ii2 = i2;
537:                    } else {
538:                        ii1 = i2;
539:                        ii2 = i1;
540:                    }
541:                    if (inBetween(ii1, ii2, i3)) {
542:                        i2 = i3;
543:                        ind3 = triRef.fetchNextData(ind3);
544:                        i3 = triRef.fetchData(ind3);
545:
546:                        if (ind1 == ind3)
547:                            return 2;
548:                        ori = orientation(triRef, i1, i2, i3);
549:                        if (ori > 0)
550:                            return 2;
551:                        else if (ori < 0)
552:                            return -2;
553:                        else
554:                            return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
555:                    } else {
556:                        i2 = i1;
557:                        ind1 = triRef.fetchPrevData(ind1);
558:                        i1 = triRef.fetchData(ind1);
559:                        if (ind1 == ind3)
560:                            return 2;
561:                        ori = orientation(triRef, i1, i2, i3);
562:                        if (ori > 0)
563:                            return 2;
564:                        else if (ori < 0)
565:                            return -2;
566:                        else
567:                            return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
568:                    }
569:                } else {
570:                    i0 = i2;
571:                    i2 = i1;
572:                    ind1 = triRef.fetchPrevData(ind1);
573:                    i1 = triRef.fetchData(ind1);
574:
575:                    if (ind1 == ind3)
576:                        return 2;
577:                    ind3 = triRef.fetchNextData(ind3);
578:                    i3 = triRef.fetchData(ind3);
579:                    if (ind1 == ind3)
580:                        return 2;
581:                    ori = orientation(triRef, i1, i2, i3);
582:                    if (ori > 0) {
583:                        ori1 = orientation(triRef, i1, i2, i0);
584:                        if (ori1 > 0) {
585:                            ori2 = orientation(triRef, i2, i3, i0);
586:                            if (ori2 > 0)
587:                                return -2;
588:                        }
589:                        return 2;
590:                    } else if (ori < 0) {
591:                        ori1 = orientation(triRef, i2, i1, i0);
592:                        if (ori1 > 0) {
593:                            ori2 = orientation(triRef, i3, i2, i0);
594:                            if (ori2 > 0)
595:                                return 2;
596:                        }
597:                        return -2;
598:                    } else {
599:                        pq = new Point2f();
600:                        Basic.vectorSub2D(triRef.points[i1], triRef.points[i2],
601:                                pq);
602:                        pr = new Point2f();
603:                        Basic.vectorSub2D(triRef.points[i3], triRef.points[i2],
604:                                pr);
605:                        dot = Basic.dotProduct2D(pq, pr);
606:                        if (dot < 0.0) {
607:                            ori = orientation(triRef, i2, i1, i0);
608:                            if (ori > 0)
609:                                return 2;
610:                            else
611:                                return -2;
612:                        } else {
613:                            return recSpikeAngle(triRef, i1, i2, i3, ind1, ind3);
614:                        }
615:                    }
616:                }
617:            }
618:
619:            /**
620:             * computes the signed angle between  p, p1  and  p, p2.
621:             *
622:             * warning: this function does not handle a 180-degree angle correctly!
623:             *          (this is no issue in our application, as we will always compute
624:             *           the angle centered at the mid-point of a valid diagonal.)
625:             */
626:            static double angle(Triangulator triRef, Point2f p, Point2f p1,
627:                    Point2f p2) {
628:                int sign;
629:                double angle1, angle2, angle;
630:                Point2f v1, v2;
631:
632:                sign = Basic.signEps(Basic.det2D(p2, p, p1), triRef.epsilon);
633:
634:                if (sign == 0)
635:                    return 0.0;
636:
637:                v1 = new Point2f();
638:                v2 = new Point2f();
639:                Basic.vectorSub2D(p1, p, v1);
640:                Basic.vectorSub2D(p2, p, v2);
641:
642:                angle1 = Math.atan2(v1.y, v1.x);
643:                angle2 = Math.atan2(v2.y, v2.x);
644:
645:                if (angle1 < 0.0)
646:                    angle1 += 2.0 * Math.PI;
647:                if (angle2 < 0.0)
648:                    angle2 += 2.0 * Math.PI;
649:
650:                angle = angle1 - angle2;
651:                if (angle > Math.PI)
652:                    angle = 2.0 * Math.PI - angle;
653:                else if (angle < -Math.PI)
654:                    angle = 2.0 * Math.PI + angle;
655:
656:                if (sign == 1) {
657:                    if (angle < 0.0)
658:                        return -angle;
659:                    else
660:                        return angle;
661:                } else {
662:                    if (angle > 0.0)
663:                        return -angle;
664:                    else
665:                        return angle;
666:                }
667:            }
668:
669:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.