Source Code Cross Referenced for SFSReduction.java in  » Code-Analyzer » javapathfinder » gov » nasa » ltl » graph » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Code Analyzer » javapathfinder » gov.nasa.ltl.graph 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        //
002:        // Copyright (C) 2005 United States Government as represented by the
003:        // Administrator of the National Aeronautics and Space Administration
004:        // (NASA).  All Rights Reserved.
005:        // 
006:        // This software is distributed under the NASA Open Source Agreement
007:        // (NOSA), version 1.3.  The NOSA has been approved by the Open Source
008:        // Initiative.  See the file NOSA-1.3-JPF at the top of the distribution
009:        // directory tree for the complete NOSA document.
010:        // 
011:        // THE SUBJECT SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY OF ANY
012:        // KIND, EITHER EXPRESSED, IMPLIED, OR STATUTORY, INCLUDING, BUT NOT
013:        // LIMITED TO, ANY WARRANTY THAT THE SUBJECT SOFTWARE WILL CONFORM TO
014:        // SPECIFICATIONS, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR
015:        // A PARTICULAR PURPOSE, OR FREEDOM FROM INFRINGEMENT, ANY WARRANTY THAT
016:        // THE SUBJECT SOFTWARE WILL BE ERROR FREE, OR ANY WARRANTY THAT
017:        // DOCUMENTATION, IF PROVIDED, WILL CONFORM TO THE SUBJECT SOFTWARE.
018:        //
019:        package gov.nasa.ltl.graph;
020:
021:        import java.io.*;
022:
023:        import java.util.Iterator;
024:        import java.util.LinkedList;
025:        import java.util.List;
026:        import java.util.StringTokenizer;
027:        import java.util.TreeSet;
028:        import java.util.Vector;
029:
030:        /**
031:         * DOCUMENT ME!
032:         */
033:        public class SFSReduction {
034:            public static void main(String[] args) {
035:                if (args.length > 1) {
036:                    System.out.println("usage:");
037:                    System.out
038:                            .println("\tjava gov.nasa.ltl.graph.SFSReduction [<filename>]");
039:
040:                    return;
041:                }
042:
043:                Graph g = null;
044:
045:                try {
046:                    if (args.length == 0) {
047:                        g = Graph.load();
048:                    } else {
049:                        g = Graph.load(args[0]);
050:                    }
051:                } catch (IOException e) {
052:                    System.out.println("Can't load the graph.");
053:
054:                    return;
055:                }
056:
057:                Graph reduced = reduce(g);
058:
059:                reduced.save();
060:            }
061:
062:            public static Graph reduce(Graph g) {
063:                // debugged by Dimitra 3/4/02 - added |PO| information so that main while
064:                // loop works correctly - removed break statement based on color only
065:                int currNumColors;
066:                int prevNumColors = 1;
067:                int currNumPO = 3;
068:                int prevNumPO = 1;
069:                TreeSet newColorSet = null;
070:                LinkedList newColorList = null;
071:                boolean accepting = false;
072:                boolean nonaccepting = false;
073:
074:                // Initialization
075:                List nodes = g.getNodes();
076:
077:                for (Iterator i = nodes.iterator(); i.hasNext();) {
078:                    Node currNode = (Node) i.next();
079:                    currNode.setIntAttribute("_prevColor", 1);
080:
081:                    if (isAccepting(currNode)) {
082:                        currNode.setIntAttribute("_currColor", 1);
083:                        accepting = true;
084:                    } else {
085:                        currNode.setIntAttribute("_currColor", 2);
086:                        nonaccepting = true;
087:                    }
088:                }
089:
090:                if (accepting && nonaccepting) {
091:                    currNumColors = 2;
092:                } else {
093:                    currNumColors = 1;
094:                }
095:
096:                // po(i, j)
097:                boolean[][] currPO = new boolean[2][2];
098:                boolean[][] prevPO;
099:
100:                for (int i = 0; i < 2; i++) {
101:                    for (int j = 0; j < 2; j++) {
102:                        if (i >= j) {
103:                            currPO[i][j] = true;
104:                        } else {
105:                            currPO[i][j] = false;
106:                        }
107:                    }
108:                }
109:
110:                while ((currNumColors != prevNumColors)
111:                        || (currNumPO != prevNumPO)) {
112:                    // Incrementing i, equiv. current values become previous ones
113:                    for (Iterator i = nodes.iterator(); i.hasNext();) {
114:                        Node currNode = (Node) i.next();
115:                        currNode.setIntAttribute("_prevColor", currNode
116:                                .getIntAttribute("_currColor"));
117:                    }
118:
119:                    prevPO = currPO;
120:                    prevNumColors = currNumColors;
121:
122:                    // Getting the new color pairs
123:                    newColorList = new LinkedList(); // keeps association of node with new color
124:                    newColorSet = new TreeSet(); // keeps set of new colors
125:
126:                    for (Iterator i = nodes.iterator(); i.hasNext();) {
127:                        Node currNode = (Node) i.next();
128:
129:                        ColorPair currPair = new ColorPair(currNode
130:                                .getIntAttribute("_prevColor"), getPrevN(
131:                                currNode, prevPO));
132:
133:                        /*    System.out.println("Transition set from node: " + currNode.getId()
134:                           + " is: " + currPair.getIMaxSet());
135:                         */
136:                        newColorList.add(new Pair(currNode.getId(), currPair));
137:                        newColorSet.add(currPair);
138:                    }
139:
140:                    currNumColors = newColorSet.size();
141:
142:                    //	  System.out.println("The number of colors is: " + currNumColors + "\n");
143:                    // Dimitra comments
144:                    // Convert the set into a linked list so that rank of object is known
145:                    // originally used set to avoid duplicates 
146:                    // rank will just be the position of the object in the list
147:                    LinkedList ordered = new LinkedList();
148:
149:                    for (Iterator i = newColorSet.iterator(); i.hasNext();) {
150:                        ColorPair currPair = (ColorPair) i.next();
151:                        ordered.add(currPair);
152:                    }
153:
154:                    // Renaming color set
155:                    for (Iterator i = newColorList.iterator(); i.hasNext();) {
156:                        Pair cPair = (Pair) i.next();
157:                        ColorPair currPair = (ColorPair) cPair.getElement();
158:                        g.getNode(cPair.getValue()).setIntAttribute(
159:                                "_currColor", ordered.indexOf(currPair) + 1);
160:                    }
161:
162:                    // Update partial order
163:                    prevNumPO = currNumPO;
164:                    currNumPO = 0;
165:                    currPO = new boolean[currNumColors][currNumColors];
166:
167:                    for (Iterator i = newColorList.iterator(); i.hasNext();) {
168:                        ColorPair currPairOne = (ColorPair) ((Pair) i.next())
169:                                .getElement();
170:
171:                        for (Iterator j = newColorList.iterator(); j.hasNext();) {
172:                            ColorPair currPairTwo = (ColorPair) ((Pair) j
173:                                    .next()).getElement();
174:                            boolean po = prevPO[currPairTwo.getColor() - 1][currPairOne
175:                                    .getColor() - 1];
176:                            boolean dominate = iDominateSet(currPairOne
177:                                    .getIMaxSet(), currPairTwo.getIMaxSet(),
178:                                    prevPO);
179:
180:                            if (po && dominate) {
181:                                currPO[ordered.indexOf(currPairTwo)][ordered
182:                                        .indexOf(currPairOne)] = true;
183:                                currNumPO++;
184:                            } else {
185:                                currPO[ordered.indexOf(currPairTwo)][ordered
186:                                        .indexOf(currPairOne)] = false;
187:                            }
188:                        }
189:                    }
190:                }
191:
192:                // Create new graph
193:                Graph result;
194:
195:                if (newColorList == null) {
196:                    result = g;
197:                } else {
198:                    result = new Graph();
199:
200:                    Node[] newNodes = new Node[currNumColors];
201:
202:                    for (int i = 0; i < currNumColors; i++) {
203:                        Node n = new Node(result);
204:                        newNodes[i] = n;
205:                    }
206:
207:                    for (Iterator i = newColorList.iterator(); i.hasNext();) {
208:                        Pair nodePair = (Pair) i.next();
209:                        int origNodeId = nodePair.getValue();
210:                        ColorPair colPair = (ColorPair) nodePair.getElement();
211:
212:                        if (newColorSet.contains(colPair)) {
213:                            // for all transitions based on colors, newColorSet makes sure that
214:                            // no duplicates exist, neither transitions that dominate each other 
215:                            // that is why we only add transitions that belong to it;
216:                            // I guess we could also just use all transitions in newColorSet to
217:                            // create the new transition relation 
218:                            newColorSet.remove(colPair);
219:
220:                            TreeSet pairSet = (TreeSet) colPair.getIMaxSet();
221:                            int color = colPair.getColor();
222:                            Node currNode = newNodes[color - 1];
223:
224:                            for (Iterator j = pairSet.iterator(); j.hasNext();) {
225:                                ITypeNeighbor neigh = (ITypeNeighbor) j.next();
226:                                int neighPos = neigh.getColor() - 1;
227:                                Edge currEdge = new Edge(currNode,
228:                                        newNodes[neighPos], neigh
229:                                                .getTransition());
230:                            }
231:
232:                            // starting node
233:                            if (g.getInit().getId() == origNodeId) {
234:                                result.setInit(currNode);
235:                            }
236:
237:                            // accepting node
238:                            if (isAccepting(g.getNode(origNodeId))) {
239:                                currNode.setBooleanAttribute("accepting", true);
240:                            }
241:                        } else {
242:                        } // ignore such transitions
243:                    }
244:                }
245:
246:                return reachabilityGraph(result);
247:
248:                //return result;
249:            }
250:
251:            private static boolean isAccepting(Node nodeIn) {
252:                return (nodeIn.getBooleanAttribute("accepting"));
253:            }
254:
255:            private static TreeSet getPrevN(Node currNode, boolean[][] prevPO) {
256:                List edges = currNode.getOutgoingEdges();
257:                LinkedList neighbors = new LinkedList();
258:                ITypeNeighbor iNeigh;
259:                TreeSet prevN = new TreeSet();
260:
261:                for (Iterator i = edges.iterator(); i.hasNext();) {
262:                    Edge currEdge = (Edge) i.next();
263:                    iNeigh = new ITypeNeighbor(currEdge.getNext()
264:                            .getIntAttribute("_prevColor"), currEdge.getGuard());
265:                    neighbors.add(iNeigh);
266:                }
267:
268:                // No neighbors present
269:                if (neighbors.size() == 0) {
270:                    return prevN;
271:                }
272:
273:                // Get the first of the list. Remove it from the list. Compare
274:                // this element with the rest of the list. If element subsumes
275:                // something in remainder of list remove that thing from list. If
276:                // element is subsumed, throw element away, else put element in
277:                // set
278:                boolean useless;
279:
280:                do {
281:                    useless = false;
282:                    iNeigh = (ITypeNeighbor) neighbors.removeFirst();
283:
284:                    for (Iterator i = neighbors.iterator(); i.hasNext();) {
285:                        ITypeNeighbor nNeigh = (ITypeNeighbor) i.next();
286:                        ITypeNeighbor dominating = iDominates(iNeigh, nNeigh,
287:                                prevPO);
288:
289:                        if (dominating == iNeigh) {
290:                            i.remove();
291:                        }
292:
293:                        if (dominating == nNeigh) {
294:                            useless = true;
295:
296:                            break;
297:                        }
298:                    }
299:
300:                    if (!useless) {
301:                        prevN.add(iNeigh);
302:                    }
303:                } while (neighbors.size() > 0);
304:
305:                return prevN;
306:            }
307:
308:            private static boolean iDominateSet(TreeSet setOne, TreeSet setTwo,
309:                    boolean[][] prevPO) {
310:                TreeSet working = new TreeSet(setTwo);
311:
312:                for (Iterator i = working.iterator(); i.hasNext();) {
313:                    ITypeNeighbor neighTwo = (ITypeNeighbor) i.next();
314:
315:                    for (Iterator j = setOne.iterator(); j.hasNext();) {
316:                        ITypeNeighbor neighOne = (ITypeNeighbor) j.next();
317:                        ITypeNeighbor dominating = iDominates(neighOne,
318:                                neighTwo, prevPO);
319:
320:                        if (dominating == neighOne) {
321:                            i.remove();
322:
323:                            break;
324:                        }
325:                    }
326:                }
327:
328:                if (working.size() == 0) {
329:                    return true;
330:                }
331:
332:                return false;
333:            }
334:
335:            /** Returns the neighbor that dominates. If none dominates the
336:             * other, then returns null
337:             */
338:            private static ITypeNeighbor iDominates(ITypeNeighbor iNeigh,
339:                    ITypeNeighbor nNeigh, boolean[][] prevPO) {
340:                String iTerm = iNeigh.getTransition();
341:                String nTerm = nNeigh.getTransition();
342:                int iColor = iNeigh.getColor();
343:                int nColor = nNeigh.getColor();
344:                String theSubterm = subterm(iTerm, nTerm);
345:
346:                if (theSubterm == iTerm) {
347:                    if (prevPO[nColor - 1][iColor - 1]) {
348:                        // iNeigh i-dominates nNeigh
349:                        return iNeigh;
350:                    } else {
351:                        return null;
352:                    }
353:                }
354:
355:                if (theSubterm == nTerm) {
356:                    if (prevPO[iColor - 1][nColor - 1]) {
357:                        // nNeigh i-dominates iNeigh
358:                        return nNeigh;
359:                    } else {
360:                        return null;
361:                    }
362:                }
363:
364:                if (theSubterm.equals("true")) {
365:                    if (prevPO[nColor - 1][iColor - 1]) {
366:                        // iNeigh i-dominates nNeigh
367:                        return iNeigh;
368:                    } else if (prevPO[iColor - 1][nColor - 1]) {
369:                        // nNeigh i-dominates iNeigh
370:                        return nNeigh;
371:                    }
372:                }
373:
374:                return null;
375:            }
376:
377:            private static Graph reachabilityGraph(Graph g) {
378:                Vector work = new Vector();
379:                Vector reachable = new Vector();
380:                work.add(g.getInit());
381:
382:                while (!work.isEmpty()) {
383:                    Node currNode = (Node) work.firstElement();
384:                    reachable.add(currNode);
385:
386:                    if (currNode != null) {
387:                        List outgoingEdges = currNode.getOutgoingEdges();
388:
389:                        for (Iterator i = outgoingEdges.iterator(); i.hasNext();) {
390:                            Edge currEdge = (Edge) i.next();
391:                            Node nextNode = (Node) currEdge.getNext();
392:
393:                            if (!(work.contains(nextNode) || reachable
394:                                    .contains(nextNode))) {
395:                                work.add(nextNode);
396:                            }
397:                        }
398:                    }
399:
400:                    if (work.remove(0) != currNode) {
401:                        System.out.println("ERROR"); // should probably throw exception
402:                    }
403:                }
404:
405:                List nodes = g.getNodes();
406:
407:                if (nodes != null) {
408:                    for (Iterator i = nodes.iterator(); i.hasNext();) {
409:                        Node n = (Node) i.next();
410:
411:                        if (!reachable.contains(n)) {
412:                            g.removeNode(n);
413:                        }
414:                    }
415:                }
416:
417:                return g;
418:            }
419:
420:            private static String subterm(String pred1, String pred2) {
421:                if (pred1.equals("-") && pred2.equals("-")) {
422:                    return "true";
423:                }
424:
425:                if (pred1.equals("-")) {
426:                    return pred1;
427:                }
428:
429:                if (pred2.equals("-")) {
430:                    return pred2;
431:                }
432:
433:                if ((pred1.indexOf("true") != -1)
434:                        && (pred2.indexOf("true") != -1)) {
435:                    return "true";
436:                }
437:
438:                if (pred1.indexOf("true") != -1) {
439:                    return pred1;
440:                }
441:
442:                if (pred2.indexOf("true") != -1) {
443:                    return pred2;
444:                }
445:
446:                // ASSUMPTION: the shortest predicate, i.e. with less litterals,
447:                // will most probably be the subterm of the other predicate
448:                // (provided terms are simplified)
449:                // alpha subterm of tau, i.e. tau implies alpha
450:                String alphaStr;
451:                String tauStr;
452:
453:                if (pred1.length() <= pred2.length()) {
454:                    alphaStr = pred1;
455:                    tauStr = pred2;
456:                } else {
457:                    alphaStr = pred2;
458:                    tauStr = pred1;
459:                }
460:
461:                StringTokenizer alphaTk = new StringTokenizer(alphaStr, "&");
462:                StringTokenizer tauTk = new StringTokenizer(tauStr, "&");
463:                LinkedList tauLst = new LinkedList();
464:
465:                // Putting the litterals of tau in a list - for easier access
466:                while (tauTk.hasMoreTokens()) {
467:                    String token = tauTk.nextToken();
468:                    tauLst.add(token);
469:                }
470:
471:                while (alphaTk.hasMoreTokens()) {
472:                    String alphaLit = alphaTk.nextToken();
473:
474:                    if (!tauLst.contains(alphaLit)) {
475:                        return "false";
476:                    }
477:                }
478:
479:                if (pred1.length() == pred2.length()) {
480:                    return "true";
481:                }
482:
483:                return alphaStr;
484:            }
485:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.