Source Code Cross Referenced for DynamicMutationExample.java in  » Development » jgap » examples » dynamicMutation » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Development » jgap » examples.dynamicMutation 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * This file is part of JGAP.
003:         *
004:         * JGAP offers a dual license model containing the LGPL as well as the MPL.
005:         *
006:         * For licensing information please see the file license.txt included with JGAP
007:         * or have a look at the top of class org.jgap.Chromosome which representatively
008:         * includes the JGAP license policy applicable for any file delivered with JGAP.
009:         */
010:        package examples.dynamicMutation;
011:
012:        import org.jgap.*;
013:        import org.jgap.impl.*;
014:
015:        /**
016:         * Experiment on how to dynamically adapt the mutation rate for different
017:         * genes. This example works with coins (see MinimizingMakeChange for
018:         * documentation). The idea is that a quarter has more impact onto the solution
019:         * than a penny, so a quarter should mutate less frequently, probably.
020:         *
021:         * @author Klaus Meffert
022:         * @since 2.6
023:         */
024:        public class DynamicMutationExample {
025:            /** String containing the CVS revision. Read out via reflection!*/
026:            private final static String CVS_REVISION = "$Revision: 1.6 $";
027:
028:            /**
029:             * The total number of times we'll let the population evolve.
030:             */
031:            private static final int MAX_ALLOWED_EVOLUTIONS = 200;
032:
033:            /**
034:             * Executes the genetic algorithm to determine the minimum number of
035:             * coins necessary to make up the given target amount of change. The
036:             * solution will then be written to System.out.
037:             *
038:             * @param a_targetChangeAmount the target amount of change for which this
039:             * method is attempting to produce the minimum number of coins
040:             * @throws Exception
041:             *
042:             * @author Neil Rotstan
043:             * @author Klaus Meffert
044:             * @since 1.0
045:             */
046:            public static void makeChangeForAmount(int a_targetChangeAmount)
047:                    throws Exception {
048:                // Start with a DefaultConfiguration, which comes setup with the
049:                // most common settings.
050:                // -------------------------------------------------------------
051:                Configuration conf = new DefaultConfiguration();
052:                // Add custom mutation operator
053:                conf.getGeneticOperators().clear();
054:                //    IUniversalRateCalculator mutCalc = new CoinsMutationRateCalc();
055:                TwoWayMutationOperator mutOp = new TwoWayMutationOperator(conf,
056:                        7);
057:                conf.addGeneticOperator(mutOp);
058:                conf.addGeneticOperator(new CrossoverOperator(conf));
059:                conf.setPreservFittestIndividual(!true);
060:                conf.setKeepPopulationSizeConstant(false);
061:                // Set the fitness function we want to use, which is our
062:                // MinimizingMakeChangeFitnessFunction. We construct it with
063:                // the target amount of change passed in to this method.
064:                // ---------------------------------------------------------
065:                FitnessFunction myFunc = new DynamicMutationFitnessFunction(
066:                        a_targetChangeAmount);
067:                //    conf.setFitnessFunction(myFunc);
068:                conf
069:                        .setBulkFitnessFunction(new BulkFitnessOffsetRemover(
070:                                myFunc));
071:                conf.reset();
072:                conf.setFitnessEvaluator(new DeltaFitnessEvaluator());
073:                // Now we need to tell the Configuration object how we want our
074:                // Chromosomes to be setup. We do that by actually creating a
075:                // sample Chromosome and then setting it on the Configuration
076:                // object. As mentioned earlier, we want our Chromosomes to each
077:                // have four genes, one for each of the coin types. We want the
078:                // values (alleles) of those genes to be integers, which represent
079:                // how many coins of that type we have. We therefore use the
080:                // IntegerGene class to represent each of the genes. That class
081:                // also lets us specify a lower and upper bound, which we set
082:                // to sensible values for each coin type.
083:                // --------------------------------------------------------------
084:                Gene[] sampleGenes = new Gene[4];
085:                sampleGenes[0] = new IntegerGene(conf, 0, 3 * 10); // Quarters
086:                sampleGenes[1] = new IntegerGene(conf, 0, 2 * 10); // Dimes
087:                sampleGenes[2] = new IntegerGene(conf, 0, 1 * 10); // Nickels
088:                sampleGenes[3] = new IntegerGene(conf, 0, 4 * 10); // Pennies
089:                IChromosome sampleChromosome = new Chromosome(conf, sampleGenes);
090:                conf.setSampleChromosome(sampleChromosome);
091:                // Finally, we need to tell the Configuration object how many
092:                // Chromosomes we want in our population. The more Chromosomes,
093:                // the larger number of potential solutions (which is good for
094:                // finding the answer), but the longer it will take to evolve
095:                // the population (which could be seen as bad).
096:                // ------------------------------------------------------------
097:                conf.setPopulationSize(80);
098:                // Create random initial population of Chromosomes.
099:                // Here we try to read in a previous run via XMLManager.readFile(..)
100:                // for demonstration purpose!
101:                // -----------------------------------------------------------------
102:                Genotype population;
103:                // Initialize the population randomly
104:                population = Genotype.randomInitialGenotype(conf);
105:                // Evolve the population. Since we don't know what the best answer
106:                // is going to be, we just evolve the max number of times.
107:                // ---------------------------------------------------------------
108:                for (int i = 0; i < MAX_ALLOWED_EVOLUTIONS; i++) {
109:                    population.evolve();
110:                }
111:                // Display the best solution we found.
112:                // -----------------------------------
113:                IChromosome bestSolutionSoFar = population
114:                        .getFittestChromosome();
115:                System.out.println("The best solution has a fitness value of "
116:                        + bestSolutionSoFar.getFitnessValue());
117:                System.out.println("It contained the following: ");
118:                System.out.println("\t"
119:                        + DynamicMutationFitnessFunction
120:                                .getNumberOfCoinsAtGene(bestSolutionSoFar, 0)
121:                        + " quarters.");
122:                System.out.println("\t"
123:                        + DynamicMutationFitnessFunction
124:                                .getNumberOfCoinsAtGene(bestSolutionSoFar, 1)
125:                        + " dimes.");
126:                System.out.println("\t"
127:                        + DynamicMutationFitnessFunction
128:                                .getNumberOfCoinsAtGene(bestSolutionSoFar, 2)
129:                        + " nickels.");
130:                System.out.println("\t"
131:                        + DynamicMutationFitnessFunction
132:                                .getNumberOfCoinsAtGene(bestSolutionSoFar, 3)
133:                        + " pennies.");
134:                System.out.println("For a total of "
135:                        + DynamicMutationFitnessFunction
136:                                .amountOfChange(bestSolutionSoFar)
137:                        + " cents in "
138:                        + DynamicMutationFitnessFunction
139:                                .getTotalNumberOfCoins(bestSolutionSoFar)
140:                        + " coins.");
141:            }
142:
143:            /**
144:             * Main method. A single command-line argument is expected, which is the
145:             * amount of change to create (in other words, 75 would be equal to 75
146:             * cents).
147:             *
148:             * @param args amount of change in cents to create
149:             * @throws Exception
150:             *
151:             * @author Neil Rotstan
152:             * @author Klaus Meffert
153:             * @since 1.0
154:             */
155:            public static void main(String[] args) throws Exception {
156:                if (args.length != 1) {
157:                    System.out
158:                            .println("Syntax: DynamicMutationExample <amount>");
159:                } else {
160:                    int amount = 0;
161:                    try {
162:                        amount = Integer.parseInt(args[0]);
163:                    } catch (NumberFormatException e) {
164:                        System.out
165:                                .println("The <amount> argument must be a valid integer value");
166:                        System.exit(1);
167:                    }
168:                    if (amount < 1
169:                            || amount >= DynamicMutationFitnessFunction.MAX_BOUND) {
170:                        System.out
171:                                .println("The <amount> argument must be between 1 and "
172:                                        + (DynamicMutationFitnessFunction.MAX_BOUND - 1)
173:                                        + ".");
174:                    } else {
175:                        makeChangeForAmount(amount);
176:                    }
177:                }
178:            }
179:
180:            /**
181:             * This class only is an experiment!
182:             *
183:             * @author Klaus Meffert
184:             * @since 2.6
185:             */
186:            public static class CoinsMutationRateCalc implements 
187:                    IUniversalRateCalculator {
188:                private int m_evolution;
189:
190:                private double m_rate0 = 0.2d;
191:
192:                private double m_rate1 = 0.6d;
193:
194:                private double m_rate2 = 0.7d;
195:
196:                private double m_rate3 = 1.0d;
197:
198:                public int calculateCurrentRate() {
199:                    int size;
200:                    size = 15;
201:                    if (size < 1) {
202:                        size = 1;
203:                    }
204:                    return size;
205:                }
206:
207:                public boolean toBePermutated(IChromosome a_chrom,
208:                        int a_geneIndex) {
209:                    RandomGenerator generator = a_chrom.getConfiguration()
210:                            .getRandomGenerator();
211:                    double mult = 0.0d;
212:                    switch (a_geneIndex) {
213:                    case 0:
214:                        mult = get(0);
215:                        break;
216:                    case 1:
217:                        mult = m_rate1;
218:                        break;
219:                    case 2:
220:                        mult = m_rate2;
221:                        break;
222:                    case 3:
223:                        mult = m_rate3;
224:                        m_evolution++;
225:                        break;
226:                    }
227:                    return (generator.nextDouble() < (1 / calculateCurrentRate())
228:                            * mult);
229:                }
230:
231:                private double get(int a_index) {
232:                    if (m_evolution > 90) {
233:                        m_rate0 = 1.0d;
234:                    } else if (m_evolution > 60) {
235:                        m_rate0 = 0.75d;
236:                    } else if (m_evolution > 30) {
237:                        m_rate0 = 0.5d;
238:                    } else if (m_evolution > 15) {
239:                        m_rate0 = 0.4d;
240:                    }
241:                    return m_rate0;
242:                }
243:            }
244:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.