Source Code Cross Referenced for PackedLineIterator.java in  » GIS » GeoTools-2.4.1 » org » geotools » geometry » jts » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.geometry.jts 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *    (C) 2004-2006, Geotools Project Managment Committee (PMC)
005:         *
006:         *    This library is free software; you can redistribute it and/or
007:         *    modify it under the terms of the GNU Lesser General Public
008:         *    License as published by the Free Software Foundation; either
009:         *    version 2.1 of the License, or (at your option) any later version.
010:         *
011:         *    This library is distributed in the hope that it will be useful,
012:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
013:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
014:         *    Lesser General Public License for more details.
015:         */
016:        package org.geotools.geometry.jts;
017:
018:        import java.awt.geom.AffineTransform;
019:
020:        import org.opengis.referencing.operation.MathTransform;
021:
022:        import com.vividsolutions.jts.geom.LineString;
023:        import com.vividsolutions.jts.geom.LinearRing;
024:        import com.vividsolutions.jts.geom.impl.PackedCoordinateSequence;
025:        import com.vividsolutions.jts.geom.impl.PackedCoordinateSequence.Double;
026:
027:        /**
028:         * A path iterator for the LiteShape class, specialized to iterate over
029:         * LineString object.
030:         *
031:         * @author Andrea Aime
032:         * @author simone giannecchini  * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/main/src/main/java/org/geotools/geometry/jts/PackedLineIterator.java $
033:         * @version $Id: PackedLineIterator.java 25075 2007-04-09 19:20:46Z desruisseaux $
034:         */
035:        public final class PackedLineIterator extends AbstractLiteIterator {
036:            /** Transform applied on the coordinates during iteration */
037:            private AffineTransform at;
038:
039:            /** The array of coordinates that represents the line geometry */
040:            private PackedCoordinateSequence.Double coordinates = null;
041:
042:            /** Current line coordinate */
043:            private int currentCoord = 0;
044:
045:            /** The previous coordinate (during iteration) */
046:            private float oldX = Float.NaN;
047:            private float oldY = Float.NaN;
048:
049:            /** True when the iteration is terminated */
050:            private boolean done = false;
051:
052:            /** True if the line is a ring */
053:            private boolean isClosed;
054:
055:            /** If true, apply simple distance based generalization */
056:            private boolean generalize = false;
057:
058:            /** Maximum distance for point elision when generalizing */
059:            private float maxDistance = 1.0f;
060:
061:            /** Horizontal scale, got from the affine transform and cached */
062:            private float xScale;
063:
064:            /** Vertical scale, got from the affine transform and cached */
065:            private float yScale;
066:
067:            private int coordinateCount;
068:
069:            /**
070:             * Creates a new instance of LineIterator
071:             *
072:             * @param ls The line string the iterator will use
073:             * @param at The affine transform applied to coordinates during iteration
074:             */
075:            public PackedLineIterator(LineString ls, AffineTransform at,
076:                    boolean generalize, float maxDistance) {
077:                if (at == null) {
078:                    at = new AffineTransform();
079:                }
080:
081:                this .at = at;
082:                xScale = (float) Math.sqrt((at.getScaleX() * at.getScaleX())
083:                        + (at.getShearX() * at.getShearX()));
084:                yScale = (float) Math.sqrt((at.getScaleY() * at.getScaleY())
085:                        + (at.getShearY() * at.getShearY()));
086:
087:                coordinates = (Double) ls.getCoordinateSequence();
088:                coordinateCount = coordinates.size();
089:                isClosed = ls instanceof  LinearRing;
090:
091:                this .generalize = generalize;
092:                this .maxDistance = maxDistance;
093:            }
094:
095:            /**
096:             * Creates a new instance of LineIterator
097:             *
098:             * @param ls The line string the iterator will use
099:             * @param at The affine transform applied to coordinates during iteration
100:             * @param generalize if true apply simple distance based generalization
101:             */
102:            //    public LineIterator(LineString ls, AffineTransform at, boolean generalize) {
103:            //        this(ls, at);
104:            //        
105:            //    }
106:            /**
107:             * Creates a new instance of LineIterator
108:             *
109:             * @param ls The line string the iterator will use
110:             * @param at The affine transform applied to coordinates during iteration
111:             * @param generalize if true apply simple distance based generalization
112:             * @param maxDistance during iteration, a point will be skipped if it's
113:             *        distance from the previous is less than maxDistance
114:             */
115:            //    public LineIterator(
116:            //        LineString ls, AffineTransform at, boolean generalize,
117:            //        double maxDistance) {
118:            //        this(ls, at, generalize);
119:            //        
120:            //    }
121:            /**
122:             * Sets the distance limit for point skipping during distance based
123:             * generalization
124:             *
125:             * @param distance the maximum distance for point skipping
126:             */
127:            public void setMaxDistance(float distance) {
128:                maxDistance = distance;
129:            }
130:
131:            /**
132:             * Returns the distance limit for point skipping during distance based
133:             * generalization
134:             *
135:             * @return the maximum distance for distance based generalization
136:             */
137:            public double getMaxDistance() {
138:                return maxDistance;
139:            }
140:
141:            /**
142:             * Returns the coordinates and type of the current path segment in the
143:             * iteration. The return value is the path-segment type: SEG_MOVETO,
144:             * SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. A double array of
145:             * length 6 must be passed in and can be used to store the coordinates of
146:             * the point(s). Each point is stored as a pair of double x,y coordinates.
147:             * SEG_MOVETO and SEG_LINETO types returns one point, SEG_QUADTO returns
148:             * two points, SEG_CUBICTO returns 3 points and SEG_CLOSE does not return
149:             * any points.
150:             *
151:             * @param coords an array that holds the data returned from this method
152:             *
153:             * @return the path-segment type of the current path segment.
154:             *
155:             * @see #SEG_MOVETO
156:             * @see #SEG_LINETO
157:             * @see #SEG_QUADTO
158:             * @see #SEG_CUBICTO
159:             * @see #SEG_CLOSE
160:             */
161:            public int currentSegment(float[] coords) {
162:                if (currentCoord == 0) {
163:                    coords[0] = (float) coordinates.getX(0);
164:                    coords[1] = (float) coordinates.getY(0);
165:                    at.transform(coords, 0, coords, 0, 1);
166:
167:                    return SEG_MOVETO;
168:                } else if ((currentCoord == coordinateCount) && isClosed) {
169:                    return SEG_CLOSE;
170:                } else {
171:                    coords[0] = (float) coordinates.getX(currentCoord);
172:                    coords[1] = (float) coordinates.getY(currentCoord);
173:                    at.transform(coords, 0, coords, 0, 1);
174:
175:                    return SEG_LINETO;
176:                }
177:            }
178:
179:            //    /**
180:            //     * Returns the coordinates and type of the current path segment in the
181:            //     * iteration. The return value is the path-segment type: SEG_MOVETO,
182:            //     * SEG_LINETO, SEG_QUADTO, SEG_CUBICTO, or SEG_CLOSE. A float array of
183:            //     * length 6 must be passed in and can be used to store the coordinates of
184:            //     * the point(s). Each point is stored as a pair of float x,y coordinates.
185:            //     * SEG_MOVETO and SEG_LINETO types returns one point, SEG_QUADTO returns
186:            //     * two points, SEG_CUBICTO returns 3 points and SEG_CLOSE does not return
187:            //     * any points.
188:            //     *
189:            //     * @param coords an array that holds the data returned from this method
190:            //     *
191:            //     * @return the path-segment type of the current path segment.
192:            //     *
193:            //     * @see #SEG_MOVETO
194:            //     * @see #SEG_LINETO
195:            //     * @see #SEG_QUADTO
196:            //     * @see #SEG_CUBICTO
197:            //     * @see #SEG_CLOSE
198:            //     */
199:            //    public int currentSegment(float[] coords) {
200:            //        double[] dcoords = new double[2];
201:            //        int result = currentSegment(dcoords);
202:            //        coords[0] = (float) dcoords[0];
203:            //        coords[1] = (float) dcoords[1];
204:            //
205:            //        return result;
206:            //    }
207:
208:            /**
209:             * Returns the winding rule for determining the interior of the path.
210:             *
211:             * @return the winding rule.
212:             *
213:             * @see #WIND_EVEN_ODD
214:             * @see #WIND_NON_ZERO
215:             */
216:            public int getWindingRule() {
217:                return WIND_NON_ZERO;
218:            }
219:
220:            /**
221:             * Tests if the iteration is complete.
222:             *
223:             * @return <code>true</code> if all the segments have been read;
224:             *         <code>false</code> otherwise.
225:             */
226:            public boolean isDone() {
227:                return done;
228:            }
229:
230:            /**
231:             * Moves the iterator to the next segment of the path forwards along the
232:             * primary direction of traversal as long as there are more points in that
233:             * direction.
234:             */
235:            public void next() {
236:                if (((currentCoord == (coordinateCount - 1)) && !isClosed)
237:                        || ((currentCoord == coordinateCount) && isClosed)) {
238:                    done = true;
239:                } else {
240:                    if (generalize) {
241:                        if (Float.isNaN(oldX)) {
242:                            currentCoord++;
243:                            oldX = (float) coordinates.getX(currentCoord);
244:                            oldY = (float) coordinates.getY(currentCoord);
245:                        } else {
246:                            float distx = 0;
247:                            float disty = 0;
248:                            float x = 0;
249:                            float y = 0;
250:
251:                            do {
252:                                currentCoord++;
253:                                x = (float) coordinates.getX(currentCoord);
254:                                y = (float) coordinates.getY(currentCoord);
255:
256:                                if (currentCoord < coordinateCount) {
257:                                    distx = Math.abs(x - oldX);
258:                                    disty = Math.abs(y - oldY);
259:                                }
260:                            } while (((distx * xScale) < maxDistance)
261:                                    && ((disty * yScale) < maxDistance)
262:                                    && ((!isClosed && (currentCoord < (coordinateCount - 1))) || (isClosed && (currentCoord < coordinateCount))));
263:
264:                            if (currentCoord < coordinateCount) {
265:                                oldX = x;
266:                                oldY = y;
267:                            } else {
268:                                oldX = Float.NaN;
269:                                oldY = Float.NaN;
270:                            }
271:                        }
272:                    } else {
273:                        currentCoord++;
274:                    }
275:                }
276:            }
277:
278:            /**
279:             * @see java.awt.geom.PathIterator#currentSegment(double[])
280:             */
281:            public int currentSegment(double[] coords) {
282:                System.out.println("Double!");
283:                return 0;
284:            }
285:
286:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.