Source Code Cross Referenced for SeaWater.java in  » GIS » GeoTools-2.4.1 » org » geotools » nature » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.nature 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    GeoTools - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *    (C) 2003-2006, GeoTools Project Managment Committee (PMC)
005:         *    (C) 2001, Institut de Recherche pour le Développement
006:         *    (C) 1999, Pêches et Océans Canada
007:         *  
008:         *    This library is free software; you can redistribute it and/or
009:         *    modify it under the terms of the GNU Lesser General Public
010:         *    License as published by the Free Software Foundation;
011:         *    version 2.1 of the License.
012:         *
013:         *    This library is distributed in the hope that it will be useful,
014:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
015:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
016:         *    Lesser General Public License for more details.
017:         *
018:         *    NOTE: permission has been given to the JScience project (http://www.jscience.org)
019:         *          to distribute this file under BSD-like license.
020:         */
021:        package org.geotools.nature;
022:
023:        /**
024:         * Sea water properties as a function of salinity, temperature and pressure.
025:         * Density is computed using the 1980 definition of Equation of State (EOS80).
026:         * Units are:
027:         *
028:         * <ul>
029:         *   <li>Salinity: Pratical Salinity Scale 1978 (PSS-78).</li>
030:         *   <li>Temperature: Celsius degrees according International Temperature Scale 1968 (ITS-68).</li>
031:         *   <li>Pressure: decibars (1 dbar = 10 kPa).
032:         * </ul>
033:         *
034:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/main/java/org/geotools/nature/SeaWater.java $
035:         * @version $Id: SeaWater.java 24765 2007-03-15 03:50:56Z desruisseaux $
036:         * @author Bernard Pelchat
037:         * @author Martin Desruisseaux
038:         *
039:         * @since 2.1
040:         */
041:        public final class SeaWater {
042:            /*
043:             * Note: Les algorithmes originaux de l'UNESCO recevait en entrés
044:             *       des pressions en décibars. Les algorithmes écrites par
045:             *       Bernard Pelchat recevaient en entrés des pressions en
046:             *       MegaPascal. La première ligne de code des algorithmes
047:             *       de Bernard Pelchat multipliait donc les pressions par
048:             *       100, afin de les convertir en decibars.
049:             */
050:
051:            /**
052:             * Conductivity (in mS/cm) of a standard sea water sample.
053:             * S is for <cite>Siemens</cite> (or Mho, its the same...).
054:             */
055:            public static final double STANDARD_CONDUCTIVITY = 42.914;
056:
057:            /**
058:             * Coéfficients de l'équation d'état EOS-80. La densité
059:             * calculée par ces coéfficients est la densité Sigma-T.
060:             */
061:            private static final double EOS80_A[] = { -28.263737E+0,
062:                    6.793952E-2, -9.095290E-3, 1.001685E-4, -1.120083E-6,
063:                    6.536332E-9 }, EOS80_B[] = { 8.24493E-1, -4.0899E-3,
064:                    7.6438E-5, -8.2467E-7, 5.3875E-9 }, EOS80_C[] = {
065:                    -5.72466E-3, 1.0227E-4, -1.6546E-6 }, EOS80_D = 4.8314E-4,
066:                    EOS80_E[] = { -1930.06E+0, 148.4206E+0, -2.327105E+0,
067:                            1.360477E-2, -5.155288E-5 }, EOS80_F[] = {
068:                            54.6746E+0, -6.03459E-1, 1.09987E-2, -6.1670E-5 },
069:                    EOS80_G[] = { 7.944E-2, 1.6483E-2, -5.3009E-4 },
070:                    EOS80_H[] = { -1.194975E-1, 1.43713E-3, 1.16092E-4,
071:                            -5.77905E-7 }, EOS80_I[] = { 2.2838E-3, -1.0981E-5,
072:                            -1.6078E-6 }, EOS80_J = 1.91075E-4, EOS80_K[] = {
073:                            3.47718E-5, -6.12293E-6, 5.2787E-8 }, EOS80_M[] = {
074:                            -9.9348E-7, 2.0816E-8, 9.1697E-10 }, EOS80_N[] = {
075:                            21582.27, 3.359406, 5.03217E-5 },
076:                    RHO_35_0_0 = 1028.1063, DR_35_0_0 = 28.106331;
077:
078:            /**
079:             * Coéfficients de l'équation d'état EOS-80. La densité
080:             * calculée par ces coéfficients est la densité "vrai".
081:             */
082:            private static final double EOS80_At[] = { 999.842594, 6.793952E-2,
083:                    -9.095290E-3, 1.001685E-4, -1.120083E-6, 6.536332E-9 },
084:                    EOS80_Et[] = { 19652.21, 148.4206, -2.327105, 1.360477E-2,
085:                            -5.155288E-5 }, EOS80_Ht[] = { 3.239908,
086:                            1.43713E-3, 1.16092E-4, -5.77905E-7 },
087:                    EOS80_Kt[] = { 8.50935E-5, -6.12293E-6, 5.2787E-8 };
088:
089:            /**
090:             * Coéfficients de l'équation de la salinité PSS-78.
091:             */
092:            private static final double PSS78_A[] = { 0.0080, -0.1692, 25.3851,
093:                    14.0941, -7.0261, 2.7081 }, PSS78_B[] = { 0.0005, -0.0056,
094:                    -0.0066, -0.0375, 0.0636, -0.0144 },
095:                    PSS78_C[] = { 0.6766097, 2.00564E-2, 1.104259E-4,
096:                            -6.9698E-7, 1.0031E-9 }, PSS78_D[] = { 3.426E-2,
097:                            4.464E-4, 4.215E-1, -3.107E-3 }, PSS78_E[] = {
098:                            2.070E-5, -6.370E-10, 3.989E-15 }, PSS78_G[] = {
099:                            -0.1692, 50.7702, 42.2823, -28.1044, 13.5405 },
100:                    PSS78_H[] = { -0.0056 - 0.0132, -0.1125, 0.2544, -0.0720 },
101:                    PSS78_K = 0.0162;
102:
103:            /**
104:             * Coéfficients pour les salinités élevées,
105:             */
106:            private static final double PSS78_AR[] = { 7.737, -9.819, 8.663,
107:                    -2.625 }, PSS78_AT[] = { 3.473E-2, 3.188E-3, -4.655E-5 },
108:                    PSS78_CR[] = { -10.01E-2, 4.82E-2, -6.682E-4 };
109:
110:            /**
111:             * Constantes nécessaires au calcul de la chaleur spécifique.
112:             *
113:             * @see #specificHeat
114:             */
115:            private static final double HEAT_AA[] = { -7.643575, 0.1072763,
116:                    -1.38385E-3 }, HEAT_BB[] = { 0.1770383, -4.07718E-3,
117:                    5.148E-5 }, HEAT_CC[] = { 4217.4, -3.720283, 0.1412855,
118:                    -2.654387E-3, 2.093236E-5 }, HEAT_A[] = { -4.9592E-1,
119:                    1.45747E-2, -3.13885E-4, 2.0357E-6, 1.7168E-8 },
120:                    HEAT_B[] = { 2.4931E-4, -1.08645E-5, 2.87533E-7,
121:                            -4.0027E-9, 2.2956E-11 }, HEAT_C[] = { -5.422E-8,
122:                            2.6380E-9, -6.5637E-11, 6.136E-13 }, HEAT_D[] = {
123:                            4.9247E-3, -1.28315E-4, 9.802E-7, 2.5941E-8,
124:                            -2.9179E-10 }, HEAT_E[] = { -1.2331E-4, -1.517E-6,
125:                            3.122E-8 }, HEAT_F[] = { -2.9558E-6, 1.17054E-7,
126:                            -2.3905E-9, 1.8448E-11 }, HEAT_G = 9.971E-8,
127:                    HEAT_H[] = { 5.540E-10, -1.7682E-11, 3.513E-13 },
128:                    HEAT_J = -1.4300E-12;
129:
130:            /**
131:             * Constantes nécessaires au calcul de la température adiabétique.
132:             *
133:             * @see #adiabeticTemperatureGradient
134:             */
135:            private static final double GRAD_A[] = { 3.5803E-05, 8.5258E-06,
136:                    -6.8360E-08, 6.6228E-10 }, GRAD_B[] = { 1.8932E-06,
137:                    -4.2393E-08 }, GRAD_C[] = { 1.8741E-08, -6.7795E-10,
138:                    8.7330E-12, -5.4481E-14 }, GRAD_D[] = { -1.1351E-10,
139:                    2.7759E-12 }, GRAD_E[] = { -4.6206E-13, 1.8676E-14,
140:                    -2.1687E-16 };
141:
142:            /**
143:             * Constantes nécessaires au calcul de la profondeur.
144:             *
145:             * @see #depth
146:             */
147:            private static final double DEPTH_C[] = { 9.72659, -2.2512E-5,
148:                    2.279E-10, -1.82E-15 };
149:
150:            /**
151:             * Constantes nécessaires au calcul de la vitesse du son.
152:             *
153:             * @see #soundVelocity
154:             */
155:            private static final double SOUND_A0[] = { 1.389, -1.262E-2,
156:                    7.164E-5, 2.006E-6, -3.21E-8 }, SOUND_A1[] = { 9.4742E-5,
157:                    -1.2580E-5, -6.4885E-8, 1.0507E-8, -2.0122E-10 },
158:                    SOUND_A2[] = { -3.9064E-7, 9.1041E-9, -1.6002E-10,
159:                            7.988E-12 }, SOUND_A3[] = { 1.100E-10, 6.649E-12,
160:                            -3.389E-13 }, SOUND_B0[] = { -1.922E-2, -4.42E-5 },
161:                    SOUND_B1[] = { 7.3637E-5, 1.7945E-7 }, SOUND_C0[] = {
162:                            1402.388, 5.03711, -5.80852E-2, 3.3420E-4,
163:                            -1.47800E-6, 3.1464E-9 }, SOUND_C1[] = { 0.153563,
164:                            6.8982E-4, -8.1788E-6, 1.3621E-7, -6.1185E-10 },
165:                    SOUND_C2[] = { 3.1260E-5, -1.7107E-6, 2.5974E-8,
166:                            -2.5335E-10, 1.0405E-12 }, SOUND_C3[] = {
167:                            -9.7729E-9, 3.8504E-10, -2.3643E-12 },
168:                    SOUND_D0 = 1.727E-3, SOUND_D1 = -7.9836E-6;
169:
170:            /**
171:             * Constantes nécessaires au calcul de la saturation en oxygène dissous.
172:             *
173:             * @see #saturationO2
174:             */
175:            private static final double O2_AT[] = { -135.29996, 1.572288E+5,
176:                    -6.637149E+7, 1.243678E+10, -8.621061E+11 }, O2_AS[] = {
177:                    0.020573, -12.142, 2363, 1 };
178:
179:            /**
180:             * Do not allow instantiation of this class.
181:             */
182:            private SeaWater() {
183:            }
184:
185:            /**
186:             * Computes density as a function of salinity, temperature and pressure.
187:             *
188:             * @param S Salinity PSS-78 (0 to 42)
189:             * @param T Temperature ITS-68 (-2 to 40°C)
190:             * @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
191:             * @return  Density (kg/m³).
192:             */
193:            public static double density(final double S, final double T,
194:                    double P) {
195:                P /= 10.0;
196:
197:                // Pure water density at atmospheric pressure
198:                final double RHO_0_T_0 = polynome(T, EOS80_At);
199:
200:                // Sea water density at atmospheric pressure
201:                final double SR = Math.sqrt(S);
202:                final double RHO_S_T_0 = (EOS80_D * S + polynome(T, EOS80_C)
203:                        * SR + polynome(T, EOS80_B))
204:                        * S + RHO_0_T_0;
205:
206:                // Compression terms
207:                final double K_S_T_0 = (polynome(T, EOS80_F) + polynome(T,
208:                        EOS80_G)
209:                        * SR)
210:                        * S + polynome(T, EOS80_Et);
211:                final double K_S_T_P = K_S_T_0
212:                        + ((EOS80_J * SR + polynome(T, EOS80_I)) * S
213:                                + polynome(T, EOS80_Ht) + (polynome(T, EOS80_Kt) + polynome(
214:                                T, EOS80_M)
215:                                * S)
216:                                * P) * P;
217:                return RHO_S_T_0 / (1.0 - P / K_S_T_P);
218:            }
219:
220:            /**
221:             * Computes density sigma-T as a function of salinity, temperature and pressure.
222:             * Density Sigma-T is equivalent to the true density minus 1000&nbsp;kg/m³, and
223:             * has typical values around 35. This computation avoid some rouding errors
224:             * occuring in the true density computation.
225:             *
226:             * @param S Salinity PSS-78 (0 to 42)
227:             * @param T Temperature ITS-68 (-2 to 40°C)
228:             * @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
229:             * @return  Density Sigma-T (kg/m³).
230:             */
231:            public static double densitySigmaT(final double S, final double T,
232:                    double P) {
233:                P /= 10.0;
234:                // Sea water density at atmospheric pressure
235:                final double SR = Math.sqrt(S);
236:                final double RHO = (EOS80_D * S + polynome(T, EOS80_C) * SR + polynome(
237:                        T, EOS80_B))
238:                        * S + polynome(T, EOS80_A);
239:
240:                // Specific volume at atmospheric pressure
241:                final double V_35_0_0 = 1.0 / RHO_35_0_0;
242:                final double SVAN_S_T_0 = -RHO * V_35_0_0 / (RHO + RHO_35_0_0);
243:                if (P <= 0) {
244:                    return RHO + DR_35_0_0;
245:                }
246:                // Compression terms, DK = K(S,T,P) - K(35,0,P)
247:                final double K0 = (polynome(T, EOS80_F) + polynome(T, EOS80_G)
248:                        * SR)
249:                        * S + polynome(T, EOS80_E);
250:                final double DK = K0
251:                        + (((EOS80_J * SR + polynome(T, EOS80_I)) * S + polynome(
252:                                T, EOS80_H)) + (polynome(T, EOS80_K) + polynome(
253:                                T, EOS80_M)
254:                                * S)
255:                                * P) * P;
256:
257:                final double K_35_0_P = polynome(P, EOS80_N);
258:                final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
259:                final double SVANS = SVAN_S_T_0 * (1.0 - P / K_35_0_P)
260:                        + V_S_T_0 * P * DK / (K_35_0_P * (K_35_0_P + DK));
261:
262:                // Compute density anomaly
263:                final double V_35_0_P = V_35_0_0 * (1.0 - P / K_35_0_P);
264:                final double DR_35_0_P = P / (K_35_0_P * V_35_0_P);
265:                final double DVAN = SVANS / (V_35_0_P * (V_35_0_P + SVANS));
266:                return DR_35_0_0 + DR_35_0_P - DVAN;
267:            }
268:
269:            /**
270:             * Computes volume as a function of salinity, temperature and pressure.
271:             * This quantity if the inverse of density. This method is equivalent
272:             * to <code>1/{@link #density density}(S,T,P)</code>.
273:             *
274:             * @param S Salinity PSS-78 (0 to 42)
275:             * @param T Temperature ITS-68 (-2 to 40°C)
276:             * @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
277:             * @return  Volume (m³/kg).
278:             */
279:            public static double volume(final double S, final double T, double P) {
280:                P /= 10.0;
281:                // Sea water density at atmospheric pressure
282:                final double SR = Math.sqrt(S);
283:                final double RHO = (EOS80_D * S + polynome(T, EOS80_C) * SR + polynome(
284:                        T, EOS80_B))
285:                        * S + polynome(T, EOS80_A);
286:
287:                // Specific volume at atmospheric pressure
288:                final double V_35_0_0 = 1.0 / RHO_35_0_0;
289:                final double SVAN_S_T_0 = -RHO * V_35_0_0 / (RHO + RHO_35_0_0);
290:                if (P <= 0) {
291:                    return SVAN_S_T_0 + V_35_0_0;
292:                }
293:                // Compression terms, DK = K(S,T,P) - K(35,0,P)
294:                final double K0 = (polynome(T, EOS80_F) + polynome(T, EOS80_G)
295:                        * SR)
296:                        * S + polynome(T, EOS80_E);
297:                final double DK = K0
298:                        + (((EOS80_J * SR + polynome(T, EOS80_I)) * S + polynome(
299:                                T, EOS80_H)) + (polynome(T, EOS80_K) + polynome(
300:                                T, EOS80_M)
301:                                * S)
302:                                * P) * P;
303:
304:                final double K_35_0_P = polynome(P, EOS80_N);
305:                final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
306:                return (SVAN_S_T_0 + V_35_0_0) * (1.0 - P / K_35_0_P) + V_S_T_0
307:                        * P * DK / (K_35_0_P * (K_35_0_P + DK));
308:            }
309:
310:            /**
311:             * Computes volumic anomaly as a function of salinity, temperature and pressure.
312:             * Volumic anomaly is defined as the sea water sample's volume minus a standard
313:             * sample's volume, where the standard sample is a sample of salinity 35, temperature
314:             * 0°C and the same pressure. In pseudo-code, {@code volumeAnomaly} is equivalent
315:             * to <code>{@link #volume volume}(S,T,P)-{@link #volume volume}(35,0,P)</code>.
316:             *
317:             * @param S Salinity PSS-78 (0 to 42)
318:             * @param T Temperature ITS-68 (-2 to 40°C)
319:             * @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
320:             * @return  Volumic anomaly (m³/kg).
321:             */
322:            public static double volumeAnomaly(final double S, final double T,
323:                    double P) {
324:                P /= 10.0;
325:                // Sea water density at atmospheric pressure
326:                final double SR = Math.sqrt(S);
327:                final double RHO = (EOS80_D * S + polynome(T, EOS80_C) * SR + polynome(
328:                        T, EOS80_B))
329:                        * S + polynome(T, EOS80_A);
330:
331:                // Specific volume at atmospheric pressure
332:                final double V_35_0_0 = 1.0 / RHO_35_0_0;
333:                final double SVAN_S_T_0 = -RHO * V_35_0_0 / (RHO + RHO_35_0_0);
334:                if (P <= 0) {
335:                    return SVAN_S_T_0;
336:                }
337:                // Compression terms, DK = K(S,T,P) - K(35,0,P)
338:                final double K0 = (polynome(T, EOS80_F) + polynome(T, EOS80_G)
339:                        * SR)
340:                        * S + polynome(T, EOS80_E);
341:                final double DK = K0
342:                        + (((EOS80_J * SR + polynome(T, EOS80_I)) * S + polynome(
343:                                T, EOS80_H)) + (polynome(T, EOS80_K) + polynome(
344:                                T, EOS80_M)
345:                                * S)
346:                                * P) * P;
347:
348:                final double K_35_0_P = polynome(P, EOS80_N);
349:                final double V_S_T_0 = SVAN_S_T_0 + V_35_0_0;
350:                return (SVAN_S_T_0 * (1.0 - P / K_35_0_P) + V_S_T_0 * P * DK
351:                        / (K_35_0_P * (K_35_0_P + DK)));
352:            }
353:
354:            /**
355:             * Practical salinity scale 1978 definition
356:             * with temperature correction, XR = SQRT( Rt )
357:             */
358:            private static double sal(double RT, double XT) {
359:                return polynome(RT, PSS78_A) + (XT / (1.0 + PSS78_K * XT))
360:                        * polynome(RT, PSS78_B);
361:            }
362:
363:            /**
364:             * {@code dsal(RT,XT)} function for derivative
365:             * of {@code sal(RT,XT)} with <var>RT</var>.
366:             */
367:            private static double dsal(double RT, double XT) {
368:                return polynome(RT, PSS78_G) + (XT / (1.0 + PSS78_K * XT))
369:                        * polynome(RT, PSS78_H);
370:            }
371:
372:            /**
373:             * Computes salinity as a function of conductivity, temperature and pressure.
374:             *
375:             * @param C Conductivity in mS/cm (millisiemens by centimeters). Multiply
376:             *          par {@link #STANDARD_CONDUCTIVITY} if {@code C} is not a
377:             *          real conductivity, but instead the ratio between the sample's
378:             *          conductivity and the standard sample's conductivity.
379:             * @param T Temperature ITS-68 (-2 to 40°C)
380:             * @param P Pressure in decibars (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
381:             * @return  Salinity PSS-78.
382:             *
383:             * @todo What to do with pression!?! Check the equation of state.
384:             */
385:            public static double salinity(double C, final double T,
386:                    final double P) {
387:                C /= STANDARD_CONDUCTIVITY;
388:                if (!(C < 5E-4)) { // use '!' in order to accept NaN
389:                    final double XR = Math
390:                            .sqrt(C
391:                                    / (polynome(T, PSS78_C) * (1.0 + polynome(
392:                                            P, PSS78_E)
393:                                            * P
394:                                            / ((PSS78_D[1] * T + PSS78_D[0])
395:                                                    * T + 1.0 + (PSS78_D[3] * T + PSS78_D[2])
396:                                                    * C))));
397:                    final double S = sal(XR, T - 15.0); // Do not use an 'assert' statement invoking 'cond'.
398:                    if (!(S >= 42))
399:                        return S; // use '!' to accept NaN
400:                    /*
401:                     * Calcule la salinité pour une eau de conductivité,
402:                     * de température et de pression données. Cet algorithme
403:                     * doit être utilisé lorsque l'on s'attend à une salinité
404:                     * entre 42 et 50.
405:                     */
406:                    return 35
407:                            * C
408:                            + C
409:                            * (C - 1)
410:                            * (polynome(C, PSS78_AR) + T
411:                                    * (polynome(T, PSS78_AT) + C
412:                                            * (PSS78_CR[0] + PSS78_CR[1] * C + PSS78_CR[2]
413:                                                    * T)));
414:                    // TODO: VERIFIER CE QUE DEVIENT LA PRESSION ET IMPLEMENTER L'EQUATION D'ETAT.
415:                } else {
416:                    return 0; // Zero conductivity trap
417:                }
418:            }
419:
420:            /**
421:             * Computes conductivity as a function of salinity, temperature and pressure.
422:             *
423:             * @param S Salinity PSS-78 (0 to 42)
424:             * @param T Temperature ITS-68 (-2 to 40°C)
425:             * @param P Pressure (0 to 10<sup>5</sup> dbar), not including atmospheric pressure.
426:             * @return  Conductivity in mS/cm.
427:             */
428:            public static double conductivity(final double S, final double T,
429:                    final double P) {
430:                if (!(S < 0.02)) { // use '!' in order to accept NaN
431:                    double XT = T - 15.0;
432:                    double RT = Math.sqrt(S / 35.0); // First approximation
433:                    double SI = sal(RT, XT);
434:                    for (int n = 0; n < 10; n++) { // Iteration loop begin here with a maximum of 10 cycles
435:                        RT += (S - SI) / dsal(RT, XT);
436:                        SI = sal(RT, XT);
437:                        if (Math.abs(SI - S) < 1E-4)
438:                            break;
439:                    }
440:                    double RTT = polynome(T, PSS78_C) * (RT * RT);
441:                    double AT = PSS78_D[3] * T + PSS78_D[2];
442:                    double BT = (PSS78_D[1] * T + PSS78_D[0]) * T + 1.0;
443:                    double CP = RTT * (BT + polynome(P, PSS78_E) * P);
444:                    BT -= RTT * AT;
445:                    // Solve quadratic equation for C = RT35*RT*(1+C/AR+b)
446:                    double cnd = 0.5
447:                            * (Math.sqrt(Math.abs((BT * BT) + 4.0 * AT * CP)) - BT)
448:                            / AT;
449:                    return cnd * STANDARD_CONDUCTIVITY;
450:                } else {
451:                    return 0; // Zero salinity trap
452:                }
453:            }
454:
455:            /**
456:             * Computes specific heat as a function of salinity, temperature and pressure.
457:             *
458:             * @param S Salinity PSS-78.
459:             * @param T Temperature (°C).
460:             * @param P Pressure (dbar), not including atmospheric pressure.
461:             * @return  Specific heat (J/(kg&times;°C)).
462:             */
463:            public static double specificHeat(final double S, final double T,
464:                    double P) {
465:                P /= 10.0;
466:                final double SR = Math.sqrt(S);
467:                return (polynome(T, HEAT_CC)
468:                        + (polynome(T, HEAT_BB) * SR + polynome(T, HEAT_AA))
469:                        * S
470:                        + (((polynome(T, HEAT_C) * P + polynome(T, HEAT_B)) * P + polynome(
471:                                T, HEAT_A)) * P) + ((((HEAT_J * SR + polynome(
472:                        T, HEAT_H))
473:                        * S * P + (HEAT_G * SR + polynome(T, HEAT_F)) * S)
474:                        * P + (polynome(T, HEAT_E) * SR + polynome(T, HEAT_D))
475:                        * S) * P));
476:            }
477:
478:            /**
479:             * Computes fusion temperature (melting point) as a function of salinity and pressure.
480:             *
481:             * @param S Salinity PSS-78.
482:             * @param P Pressure (dbar), not including atmospheric pressure.
483:             * @return  Melting point (°C).
484:             */
485:            public static double fusionTemperature(final double S,
486:                    final double P) {
487:                return (-0.0575 + 1.710523E-3 * Math.sqrt(S) + -2.154996E-4 * S)
488:                        * S + -7.53E-4 * P;
489:            }
490:
491:            /**
492:             * Computes adiabetic temperature gradient as a function of salinity, temperature and pressure.
493:             *
494:             * @param S Salinity PSS-78.
495:             * @param T Temperature (°C).
496:             * @param P Pressure (dbar), not including atmospheric pressure.
497:             * @return  Adiabetic temperature gradient (°C/dbar).
498:             */
499:            public static double adiabeticTemperatureGradient(double S,
500:                    final double T, final double P) {
501:                S -= 35.0;
502:                return (polynome(T, GRAD_A) + polynome(T, GRAD_B) * S + (polynome(
503:                        T, GRAD_C)
504:                        + polynome(T, GRAD_D) * S + polynome(T, GRAD_E) * P)
505:                        * P);
506:            }
507:
508:            /**
509:             * Computes depth as a function of pressure and latitude.
510:             *
511:             * @param  P Pressure (dbar), not including atmospheric pressure.
512:             * @param  lat Latitude in degrees (-90 to 90°)
513:             * @return Depth (m).
514:             */
515:            public static double depth(final double P, double lat) {
516:                lat = Math.sin(lat);
517:                lat *= lat;
518:                lat = 9.780318 * (1.0 + 5.2788E-3 * lat + 2.36E-5 * (lat * lat));
519:                return polynome(P, DEPTH_C) * P / (lat + (0.5 * 2.184E-6) * P);
520:            }
521:
522:            /**
523:             * Computes sound velocity as a function of salinity, temperature and pressure.
524:             *
525:             * @param S Salinity PSS-78.
526:             * @param T Temperature (°C).
527:             * @param P Pressure (dbar), not including atmospheric pressure.
528:             * @return  Sound velocity (m/s).
529:             */
530:            public static double soundVelocity(final double S, final double T,
531:                    final double P) {
532:                // S^0 terms
533:                final double CW = ((polynome(T, SOUND_C3) * P + polynome(T,
534:                        SOUND_C2))
535:                        * P + polynome(T, SOUND_C1))
536:                        * P + polynome(T, SOUND_C0);
537:                // S^1 terms
538:                final double A = ((polynome(T, SOUND_A3) * P + polynome(T,
539:                        SOUND_A2))
540:                        * P + polynome(T, SOUND_A1))
541:                        * P + polynome(T, SOUND_A0);
542:                // S^3/2 terms
543:                final double B = polynome(T, SOUND_B0) + polynome(T, SOUND_B1)
544:                        * P;
545:
546:                // S^2 terms
547:                final double D = SOUND_D0 + SOUND_D1 * P;
548:
549:                // sound speed return
550:                return CW + (D * S + B * Math.sqrt(S) + A) * S;
551:            }
552:
553:            /**
554:             * Computes saturation in disolved oxygen as a function of salinity and temperature.
555:             *
556:             * @param S Salinity PSS-78.
557:             * @param T Temperature (°C).
558:             * @return  Saturation in disolved oxygen (µmol/kg).
559:             */
560:            public static double saturationO2(final double S, double T) {
561:                T += 273.15;
562:                return Math.exp(polynome_neg(T, O2_AT) + S
563:                        * polynome_neg(T, O2_AS));
564:            }
565:
566:            /**
567:             * Calcule la valeur d'un polynôme.
568:             * Cette fonction calcule la valeur de:
569:             *
570:             * <blockquote><pre>
571:             *    y = C[0] + C[1]*x + C[2]*x² + C[3]*x³
572:             * </pre></blockquote>
573:             *
574:             * où C est un vecteur de coéfficients transmis en argument.
575:             * Une exception sera levée si ce tableau ne contient pas
576:             * au moins 1 élément.
577:             *
578:             * @param x Valeur x à laquelle calculer le polynôme.
579:             * @param c Coéfficients C du polynôme.
580:             * @return  La valeur du polynôme au x spécifié.
581:             *
582:             * @see #poly_inv(double,double[])
583:             */
584:            private static double polynome(final double x, final double c[]) {
585:                int n = c.length - 1;
586:                double y = c[n];
587:                while (n > 0) {
588:                    y = y * x + c[--n];
589:                }
590:                return y;
591:            }
592:
593:            /**
594:             * Calcule la valeur de:
595:             *
596:             * <blockquote><pre>
597:             *    y = C[0] + C[1]/x + C[2]/x² + C[3]/x³
598:             * </pre></blockquote>
599:             *
600:             * où C est un vecteur de coéfficients transmis en argument.
601:             * Une exception sera levée si ce tableau ne contient pas
602:             * au moins 1 élément.
603:             *
604:             * @param x Valeur x à laquelle calculer le polynôme.
605:             * @param C Coéfficients C du polynôme.
606:             * @return  La valeur du polynôme au x spécifié.
607:             *
608:             * @see #polynome(double,double[])
609:             */
610:            private static double polynome_neg(final double x, final double c[]) {
611:                int n = c.length - 1;
612:                double y = c[n];
613:                while (n > 0) {
614:                    y = y / x + c[--n];
615:                }
616:                return y;
617:            }
618:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.