Source Code Cross Referenced for BursaWolfTransformBuilder.java in  » GIS » GeoTools-2.4.1 » org » geotools » referencing » operation » builder » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » GIS » GeoTools 2.4.1 » org.geotools.referencing.operation.builder 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    Geotools2 - OpenSource mapping toolkit
003:         *    http://geotools.org
004:         *    (C) 2002-2006, Geotools Project Managment Committee (PMC)
005:         *
006:         *    This library is free software; you can redistribute it and/or
007:         *    modify it under the terms of the GNU Lesser General Public
008:         *    License as published by the Free Software Foundation;
009:         *    version 2.1 of the License.
010:         *
011:         *    This library is distributed in the hope that it will be useful,
012:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
013:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
014:         *    Lesser General Public License for more details.
015:         */
016:        package org.geotools.referencing.operation.builder;
017:
018:        import org.geotools.referencing.datum.BursaWolfParameters;
019:        import org.geotools.referencing.operation.matrix.GeneralMatrix;
020:        import org.geotools.referencing.operation.transform.GeocentricTranslation;
021:        import org.opengis.referencing.FactoryException;
022:        import org.opengis.referencing.cs.CartesianCS;
023:        import org.opengis.referencing.datum.GeodeticDatum;
024:        import org.opengis.referencing.operation.MathTransform;
025:        import org.opengis.geometry.DirectPosition;
026:        import org.opengis.geometry.MismatchedDimensionException;
027:        import org.opengis.geometry.MismatchedReferenceSystemException;
028:
029:        // J2SE and extensions
030:        import java.util.List;
031:        import javax.vecmath.MismatchedSizeException;
032:
033:        /**
034:         * Builds {@linkplain org.opengis.referencing.operation.MathTransform
035:         * MathTransform} setup as BursaWolf transformation from a list of {@linkplain
036:         * org.geotools.referencing.operation.builder.MappedPosition MappedPosition}.
037:         * The calculation uses least square method.  Calculated parameters can be
038:         * used for following operations:<p></p>
039:         *  <p>The equations:<pre> X = q * R * x  +  T ,             </pre>Where X
040:         * is the Matrix of destination points, q is the scale,  R is the rotation
041:         * Matrix, x is the Matrix of source points  and T is matrix of translation.
042:         * Expressing the errors, we get this:<pre>        Err =  A * Dx + l </pre>where
043:         * Err is the Error Matrix, A is Matrix of derivations, Dx is Matrix  of
044:         * difference changes of 7 parameters, and l is value of DX, DY, DZ for
045:         * calculated from approximate values. Using the least square method to
046:         * minimalize the errors we get this result:<pre>
047:         *  Dx = (A<sup>T</sup>A)<sup>-1</sup> A<sup>T</sup>l  </pre></p>
048:         *
049:         * @since 2.4
050:         * @source $URL: http://svn.geotools.org/geotools/tags/2.4.1/modules/library/referencing/src/main/java/org/geotools/referencing/operation/builder/BursaWolfTransformBuilder.java $
051:         * @version $Id: BursaWolfTransformBuilder.java 24925 2007-03-27 20:12:08Z jgarnett $
052:         * @author Jan Jezek
053:         *
054:         */
055:        public class BursaWolfTransformBuilder extends MathTransformBuilder {
056:            /** The Geodetic Datum of target reference system */
057:            private GeodeticDatum targetDatum;
058:
059:            /** Matrix of source points */
060:            GeneralMatrix x;
061:
062:            /** Matrix of destination points. */
063:            GeneralMatrix X;
064:
065:            /** Bursa Wolf rotation in arc radians. */
066:            private double alfa = 0;
067:
068:            /** Bursa Wolf rotation in arc radians. */
069:            private double beta = 0;
070:
071:            /** Bursa Wolf rotation in arc radians. */
072:            private double gamma = 0;
073:
074:            /** Bursa Wolf shift in meters. */
075:            private double dx = 0;
076:
077:            /** Bursa Wolf shift in meters. */
078:            private double dy = 0;
079:
080:            /** Bursa Wolf shift in meters. */
081:            private double dz = 0;
082:
083:            /** Bursa Wolf scaling. */
084:            private double q = 1;
085:
086:            /**
087:             * Creates a BursaWolfTransformBuilder.
088:             * 
089:             * @param vectors list of {@linkplain
090:             * org.geotools.referencing.operation.builder.MappedPosition MappedPosition}
091:             */
092:            public BursaWolfTransformBuilder(List /*<MappedPosition>*/vectors)
093:                    throws MismatchedSizeException,
094:                    MismatchedDimensionException,
095:                    MismatchedReferenceSystemException {
096:                super .setMappedPositions(vectors);
097:
098:                x = new GeneralMatrix(vectors.size(), 3);
099:                X = new GeneralMatrix(vectors.size(), 3);
100:                x = getx();
101:                X = getX();
102:                this .getDxMatrix();
103:            }
104:
105:            /**
106:             * Returns the minimum number of points required by this builder,
107:             * which is 3.
108:             *
109:             * @return the minimum number of points required by this builder which is
110:             *         3.
111:             */
112:            public int getMinimumPointCount() {
113:                return 3;
114:            }
115:
116:            /**
117:             * Returns the dimension for {@link #getSourceCRS source} and
118:             * {@link #getTargetCRS target} CRS, which is 2.
119:             *
120:             * @return dimension for {@linkplain #getSourceCRS source} and {@link
121:             *         #getTargetCRS target} CRS, which is 2.
122:             */
123:            public int getDimension() {
124:                return 3;
125:            }
126:
127:            /**
128:             * Returns the required coordinate system type, which is
129:             * {@linkplain CartesianCS cartesian CS}.
130:             *
131:             * @return coordinate system type
132:             */
133:            public Class /*<? extends CartesianCS>*/getCoordinateSystemType() {
134:                return CartesianCS.class;
135:            }
136:
137:            /**
138:             * Fills the x matrix by coordinates of source points.
139:             *
140:             * @return x matrix.
141:             */
142:            protected GeneralMatrix getx() {
143:                final DirectPosition[] sourcePoints = getSourcePoints();
144:                GeneralMatrix x = new GeneralMatrix(3 * sourcePoints.length, 1);
145:
146:                for (int j = 0; j < (x.getNumRow()); j = j + 3) {
147:                    x.setElement(j, 0, sourcePoints[j / 3].getCoordinates()[0]);
148:                    x.setElement(j + 1, 0,
149:                            sourcePoints[j / 3].getCoordinates()[1]);
150:                    x.setElement(j + 2, 0,
151:                            sourcePoints[j / 3].getCoordinates()[2]);
152:                }
153:
154:                return x;
155:            }
156:
157:            /**
158:             * Fills the x matrix by  coordinates of destination points.
159:             *
160:             * @return the X matrix
161:             */
162:            protected GeneralMatrix getX() {
163:                final DirectPosition[] sourcePoints = getSourcePoints();
164:                final DirectPosition[] targetPoints = getTargetPoints();
165:                GeneralMatrix X = new GeneralMatrix(3 * sourcePoints.length, 1);
166:
167:                for (int j = 0; j < (X.getNumRow()); j = j + 3) {
168:                    X.setElement(j, 0, targetPoints[j / 3].getCoordinates()[0]);
169:                    X.setElement(j + 1, 0,
170:                            targetPoints[j / 3].getCoordinates()[1]);
171:                    X.setElement(j + 2, 0,
172:                            targetPoints[j / 3].getCoordinates()[2]);
173:                }
174:
175:                return X;
176:            }
177:
178:            /**
179:             * Generates rotation matrix around X axis.
180:             *
181:             * @return rotation Matrix
182:             */
183:            protected GeneralMatrix getRalfa() {
184:                GeneralMatrix Ralfa = new GeneralMatrix(3, 3);
185:                double[] m0 = { 1, 0, 0 };
186:                double[] m1 = { 0, Math.cos(alfa), Math.sin(alfa) };
187:                double[] m2 = { 0, -Math.sin(alfa), Math.cos(alfa) };
188:                Ralfa.setRow(0, m0);
189:                Ralfa.setRow(1, m1);
190:                Ralfa.setRow(2, m2);
191:
192:                return Ralfa;
193:            }
194:
195:            /**
196:             * Generates rotation matrix around Y axis.
197:             *
198:             * @return rotation Matrix.
199:             */
200:            protected GeneralMatrix getRbeta() {
201:                GeneralMatrix Rbeta = new GeneralMatrix(3, 3);
202:                double[] m0 = { Math.cos(beta), 0, -Math.sin(beta) };
203:                double[] m1 = { 0, 1, 0 };
204:                double[] m2 = { Math.sin(beta), 0, Math.cos(beta) };
205:                Rbeta.setRow(0, m0);
206:                Rbeta.setRow(1, m1);
207:                Rbeta.setRow(2, m2);
208:
209:                return Rbeta;
210:            }
211:
212:            /**
213:             * Generates rotation matrix around Z axis.
214:             *
215:             * @return rotation Matrix.
216:             */
217:            protected GeneralMatrix getRgamma() {
218:                GeneralMatrix Rgamma = new GeneralMatrix(3, 3);
219:                double[] m0 = { Math.cos(gamma), Math.sin(gamma), 0 };
220:                double[] m1 = { -Math.sin(gamma), Math.cos(gamma), 0 };
221:                double[] m2 = { 0, 0, 1 };
222:                Rgamma.setRow(0, m0);
223:                Rgamma.setRow(1, m1);
224:                Rgamma.setRow(2, m2);
225:
226:                return Rgamma;
227:            }
228:
229:            /**
230:             * Generates partial derivative with respect to alfa.
231:             *
232:             * @return Matrix, that represents partial derivation of rotation Matrix
233:             *         with respect to  alfa.
234:             */
235:            protected GeneralMatrix getDRalfa() {
236:                GeneralMatrix dRa = new GeneralMatrix(3, 3);
237:
238:                double[] m0 = { 0, 0, 0 };
239:                double[] m1 = { 0, -Math.sin(alfa), Math.cos(alfa) };
240:                double[] m2 = { 0, -Math.cos(alfa), -Math.sin(alfa) };
241:
242:                dRa.setRow(0, m0);
243:                dRa.setRow(1, m1);
244:                dRa.setRow(2, m2);
245:
246:                dRa.mul(dRa, getRbeta());
247:                dRa.mul(dRa, getRgamma());
248:
249:                return specialMul(dRa, x);
250:            }
251:
252:            /**
253:             * Generates partial derivative with respect to beta.
254:             *
255:             * @return Matrix, that represents partial derivation of rotation Matrix
256:             *         with respect to  beta.
257:             */
258:            protected GeneralMatrix getDRbeta() {
259:                //GeneralMatrix dRbeta = new GeneralMatrix(3 * sourcePoints.size(), 1);  
260:                GeneralMatrix dRb = new GeneralMatrix(3, 3);
261:                double[] m0 = { -Math.sin(beta), 0, -Math.cos(beta) };
262:                double[] m1 = { 0, 0, 0 };
263:                double[] m2 = { Math.cos(beta), 0, -Math.sin(beta) };
264:                dRb.setRow(0, m0);
265:                dRb.setRow(1, m1);
266:                dRb.setRow(2, m2);
267:
268:                dRb.mul(getRalfa(), dRb);
269:                dRb.mul(dRb, getRgamma());
270:
271:                return specialMul(dRb, x);
272:            }
273:
274:            /**
275:             * Generates partial derivative with respect to gamma.
276:             *
277:             * @return Matrix, that represents partial derivation of rotation Matrix
278:             *         with respect to  gamma.
279:             */
280:            protected GeneralMatrix getDRgamma() {
281:                //	GeneralMatrix dRgamma = new GeneralMatrix(3 * sourcePoints.size(), 1);
282:                GeneralMatrix dRg = new GeneralMatrix(3, 3);
283:                GeneralMatrix pom = new GeneralMatrix(3, 3);
284:                double[] m0 = { -Math.sin(gamma), Math.cos(gamma), 0 };
285:                double[] m1 = { -Math.cos(gamma), -Math.sin(gamma), 0 };
286:                double[] m2 = { 0, 0, 0 };
287:                dRg.setRow(0, m0);
288:                dRg.setRow(1, m1);
289:                dRg.setRow(2, m2);
290:
291:                pom.mul(getRalfa(), getRbeta());
292:                dRg.mul(pom, dRg);
293:
294:                return specialMul(dRg, x);
295:            }
296:
297:            /**
298:             * Generates partial derivative in q (scale factor).
299:             *
300:             * @return rotation Matrix.
301:             */
302:            protected GeneralMatrix getDq() {
303:                //	GeneralMatrix Dq = new GeneralMatrix(3 * sourcePoints.size(), 1);
304:                GeneralMatrix R = new GeneralMatrix(3, 3);
305:                R.mul(getRalfa(), getRbeta());
306:                R.mul(R, getRgamma());
307:
308:                return specialMul(R, x);
309:            }
310:
311:            /**
312:             * Calculates the matrix of errors from aproximate values of
313:             * prameters.
314:             *
315:             * @return the l matrix.
316:             */
317:            protected GeneralMatrix getl() {
318:                GeneralMatrix l = new GeneralMatrix(3 * getMappedPositions()
319:                        .size(), 1);
320:                GeneralMatrix R = new GeneralMatrix(3, 3);
321:                GeneralMatrix T = new GeneralMatrix(3, 1, new double[] { -dx,
322:                        -dy, -dz });
323:                GeneralMatrix qMatrix = new GeneralMatrix(1, 1,
324:                        new double[] { q });
325:                GeneralMatrix qx = new GeneralMatrix(X.getNumRow(), X
326:                        .getNumCol());
327:                qx.mul(x, qMatrix);
328:                R.mul(getRalfa(), getRbeta());
329:                R.mul(getRgamma());
330:
331:                l.sub(specialMul(R, qx), X);
332:                l = specialSub(T, l);
333:
334:                return l;
335:            }
336:
337:            /**
338:             * Method for multiplying  matrix (3,3) by matrix of  coordintes (3
339:             * number of coordinates,1)
340:             *
341:             * @param R ratrix
342:             * @param x matrix
343:             *
344:             * @return matrix
345:             */
346:            protected GeneralMatrix specialMul(GeneralMatrix R, GeneralMatrix x) {
347:                GeneralMatrix dRx = new GeneralMatrix(3 * getMappedPositions()
348:                        .size(), 1);
349:
350:                for (int i = 0; i < x.getNumRow(); i = i + 3) {
351:                    GeneralMatrix subMatrix = new GeneralMatrix(3, 1);
352:                    x.copySubMatrix(i, 0, 3, 1, 0, 0, subMatrix);
353:                    subMatrix.mul(R, subMatrix);
354:                    subMatrix.copySubMatrix(0, 0, 3, 1, i, 0, dRx);
355:                }
356:
357:                return dRx;
358:            }
359:
360:            /**
361:             * Method for addition matrix (3,3) with matrix of coordintes (3
362:             * number of coordinates,1)
363:             *
364:             * @param R ratrix
365:             * @param x matrix
366:             *
367:             * @return matrix
368:             */
369:            private GeneralMatrix specialSub(GeneralMatrix R, GeneralMatrix x) {
370:                GeneralMatrix dRx = new GeneralMatrix(3 * getMappedPositions()
371:                        .size(), 1);
372:
373:                for (int i = 0; i < x.getNumRow(); i = i + 3) {
374:                    GeneralMatrix subMatrix = new GeneralMatrix(3, 1);
375:                    x.copySubMatrix(i, 0, 3, 1, 0, 0, subMatrix);
376:                    subMatrix.sub(R, subMatrix);
377:                    subMatrix.copySubMatrix(0, 0, 3, 1, i, 0, dRx);
378:                }
379:
380:                return dRx;
381:            }
382:
383:            /**
384:             * Glues the submatrix of derivations into the A matrix.
385:             *
386:             * @return A mtarix
387:             */
388:            protected GeneralMatrix getA() {
389:                final int size = getMappedPositions().size();
390:                GeneralMatrix A = new GeneralMatrix(3 * size, 7);
391:                GeneralMatrix DT = new GeneralMatrix(3, 3);
392:
393:                // the partial derivative with respect to dx,dy,dz. 
394:                double[] m0 = { 1, 0, 0 };
395:                double[] m1 = { 0, 1, 0 };
396:                double[] m2 = { 0, 0, 1 };
397:                DT.setRow(0, m0);
398:                DT.setRow(1, m1);
399:                DT.setRow(2, m2);
400:
401:                for (int i = 0; i < A.getNumRow(); i = i + 3) {
402:                    DT.copySubMatrix(0, 0, 3, 3, i, 0, A);
403:                }
404:
405:                getDRalfa().copySubMatrix(0, 0, 3 * size, 1, 0, 3, A);
406:                getDRbeta().copySubMatrix(0, 0, 3 * size, 1, 0, 4, A);
407:                getDRgamma().copySubMatrix(0, 0, 3 * size, 1, 0, 5, A);
408:                getDq().copySubMatrix(0, 0, 3 * size, 1, 0, 6, A);
409:
410:                return A;
411:            }
412:
413:            /**
414:             * Returns array of doubles of transformation parameters (dx, dy,
415:             * dz, ex, ey, ez, scale).
416:             *
417:             * @return array of doubles of transformation parameters (dx, dy, dz, ex,
418:             *         ey, ez, scale).
419:             */
420:            protected double[] getParameters() {
421:                return getDxMatrix().getElements()[0];
422:            }
423:
424:            /**
425:             * Method that claculates the parameters by iteration. The
426:             * tolarance is set to 1  10<sub>-8</sub>  and max �number of steps is set
427:             * to 20.
428:             *
429:             * @return Matrix of parameters (dx, dy, dz, ex, ey, ez, scale).
430:             */
431:            public GeneralMatrix getDxMatrix() {
432:                return getDxMatrix(0.00000001, 20);
433:            }
434:
435:            /**
436:             * Iterates the parameters..
437:             *
438:             * @param tolerance for iteration steps (the max difference between last
439:             *        two steps)
440:             * @param maxSteps highest number of iteations.
441:             *
442:             * @return GeneralMatrix of calculated parameters.
443:             */
444:            private GeneralMatrix getDxMatrix(double tolerance, int maxSteps) {
445:                // Matriix of new calculated coefficeients
446:                GeneralMatrix xNew = new GeneralMatrix(7, 1);
447:
448:                // Matrix of coefficients claculated in previous iteration
449:                GeneralMatrix xOld = new GeneralMatrix(7, 1);
450:
451:                // diference between each steps of old iteration    	
452:                GeneralMatrix dxMatrix = new GeneralMatrix(7, 1);
453:
454:                GeneralMatrix zero = new GeneralMatrix(7, 1);
455:                zero.setZero();
456:
457:                // i is a number of iterations
458:                int i = 0;
459:
460:                // cicle for iteration
461:                do {
462:                    xOld.set(new double[] { dx, dy, dz, alfa, beta, gamma, q });
463:
464:                    GeneralMatrix A = getA();
465:                    GeneralMatrix l = getl();
466:
467:                    GeneralMatrix AT = (GeneralMatrix) A.clone();
468:                    AT.transpose();
469:
470:                    GeneralMatrix ATA = new GeneralMatrix(7, 7);
471:                    GeneralMatrix ATl = new GeneralMatrix(7, 1);
472:
473:                    // dx = A^T * A  * A^T * l    	
474:                    ATA.mul(AT, A);
475:                    ATA.invert();
476:                    ATl.mul(AT, l);
477:
478:                    dxMatrix.mul(ATA, ATl);
479:
480:                    // New values of x = dx + previous values
481:                    xOld.negate();
482:                    xNew.sub(dxMatrix, xOld);
483:
484:                    // New values are setup for another iteration
485:                    dx = xNew.getElement(0, 0);
486:                    dy = xNew.getElement(1, 0);
487:                    dz = xNew.getElement(2, 0);
488:                    alfa = xNew.getElement(3, 0);
489:                    beta = xNew.getElement(4, 0);
490:                    gamma = xNew.getElement(5, 0);
491:                    q = xNew.getElement(6, 0);
492:
493:                    i++;
494:                } while ((!dxMatrix.epsilonEquals(zero, tolerance) & (i < maxSteps)));
495:
496:                xNew.transpose();
497:
498:                return xNew;
499:            }
500:
501:            /**
502:             * Coverts radians to seconds.
503:             *
504:             * @param rad Angle in radians
505:             *
506:             * @return Angle is seconds
507:             */
508:            private static double radiansToSeconds(double rad) {
509:                return (rad * (180 / Math.PI) * (3600));
510:            }
511:
512:            /**
513:             * Returns Bursa Wolf Transformation parameters.
514:             *
515:             * @param Datum The target datum for this parameters.
516:             *
517:             * @return parameters the BursaWolfParameters
518:             */
519:            public BursaWolfParameters getBursaWolfParameters(
520:                    GeodeticDatum Datum) {
521:                BursaWolfParameters parameters = new BursaWolfParameters(Datum);
522:                parameters.dx = dx;
523:                parameters.dy = dy;
524:                parameters.dz = dz;
525:                parameters.ex = -radiansToSeconds(alfa);
526:                parameters.ey = -radiansToSeconds(beta);
527:                parameters.ez = -radiansToSeconds(gamma);
528:                parameters.ppm = (q - 1) * 1000000;
529:
530:                return parameters;
531:            }
532:
533:            public void setTargetGeodeticDatum(GeodeticDatum gd) {
534:                this .targetDatum = gd;
535:            }
536:
537:            /**
538:             * Returns MathtTransform setup as BursaWolf transformation.
539:             *
540:             * @return calculated MathTransform
541:             *
542:             * @throws FactoryException when the size of source and destination point
543:             *         is not the same or if the number of points is too small to
544:             *         define such transformation.
545:             */
546:            protected MathTransform computeMathTransform()
547:                    throws FactoryException {
548:                return new GeocentricTranslation(
549:                        getBursaWolfParameters(targetDatum));
550:            }
551:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.