Source Code Cross Referenced for HypergeometricDistributionImpl.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » distribution » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.distribution 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 2003-2004 The Apache Software Foundation.
003:         *
004:         * Licensed under the Apache License, Version 2.0 (the "License");
005:         * you may not use this file except in compliance with the License.
006:         * You may obtain a copy of the License at
007:         *
008:         *      http://www.apache.org/licenses/LICENSE-2.0
009:         *
010:         * Unless required by applicable law or agreed to in writing, software
011:         * distributed under the License is distributed on an "AS IS" BASIS,
012:         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013:         * See the License for the specific language governing permissions and
014:         * limitations under the License.
015:         */
016:
017:        package org.apache.commons.math.distribution;
018:
019:        import java.io.Serializable;
020:
021:        import org.apache.commons.math.util.MathUtils;
022:
023:        /**
024:         * The default implementation of {@link HypergeometricDistribution}.
025:         *
026:         * @version $Revision: 348888 $ $Date: 2005-11-24 23:21:25 -0700 (Thu, 24 Nov 2005) $
027:         */
028:        public class HypergeometricDistributionImpl extends
029:                AbstractIntegerDistribution implements 
030:                HypergeometricDistribution, Serializable {
031:
032:            /** Serializable version identifier */
033:            private static final long serialVersionUID = -436928820673516179L;
034:
035:            /** The number of successes in the population. */
036:            private int numberOfSuccesses;
037:
038:            /** The population size. */
039:            private int populationSize;
040:
041:            /** The sample size. */
042:            private int sampleSize;
043:
044:            /**
045:             * Construct a new hypergeometric distribution with the given the population
046:             * size, the number of successes in the population, and the sample size.
047:             * @param populationSize the population size.
048:             * @param numberOfSuccesses number of successes in the population.
049:             * @param sampleSize the sample size.
050:             */
051:            public HypergeometricDistributionImpl(int populationSize,
052:                    int numberOfSuccesses, int sampleSize) {
053:                super ();
054:                if (numberOfSuccesses > populationSize) {
055:                    throw new IllegalArgumentException(
056:                            "number of successes must be less than or equal to "
057:                                    + "population size");
058:                }
059:                if (sampleSize > populationSize) {
060:                    throw new IllegalArgumentException(
061:                            "sample size must be less than or equal to population size");
062:                }
063:                setPopulationSize(populationSize);
064:                setSampleSize(sampleSize);
065:                setNumberOfSuccesses(numberOfSuccesses);
066:            }
067:
068:            /**
069:             * For this disbution, X, this method returns P(X ≤ x).
070:             * @param x the value at which the PDF is evaluated.
071:             * @return PDF for this distribution. 
072:             */
073:            public double cumulativeProbability(int x) {
074:                double ret;
075:
076:                int n = getPopulationSize();
077:                int m = getNumberOfSuccesses();
078:                int k = getSampleSize();
079:
080:                int[] domain = getDomain(n, m, k);
081:                if (x < domain[0]) {
082:                    ret = 0.0;
083:                } else if (x >= domain[1]) {
084:                    ret = 1.0;
085:                } else {
086:                    ret = innerCumulativeProbability(domain[0], x, 1, n, m, k);
087:                }
088:
089:                return ret;
090:            }
091:
092:            /**
093:             * Return the domain for the given hypergeometric distribution parameters.
094:             * @param n the population size.
095:             * @param m number of successes in the population.
096:             * @param k the sample size.
097:             * @return a two element array containing the lower and upper bounds of the
098:             *         hypergeometric distribution.  
099:             */
100:            private int[] getDomain(int n, int m, int k) {
101:                return new int[] { getLowerDomain(n, m, k),
102:                        getUpperDomain(m, k) };
103:            }
104:
105:            /**
106:             * Access the domain value lower bound, based on <code>p</code>, used to
107:             * bracket a PDF root.
108:             * 
109:             * @param p the desired probability for the critical value
110:             * @return domain value lower bound, i.e.
111:             *         P(X &lt; <i>lower bound</i>) &lt; <code>p</code> 
112:             */
113:            protected int getDomainLowerBound(double p) {
114:                return getLowerDomain(getPopulationSize(),
115:                        getNumberOfSuccesses(), getSampleSize());
116:            }
117:
118:            /**
119:             * Access the domain value upper bound, based on <code>p</code>, used to
120:             * bracket a PDF root.
121:             * 
122:             * @param p the desired probability for the critical value
123:             * @return domain value upper bound, i.e.
124:             *         P(X &lt; <i>upper bound</i>) &gt; <code>p</code> 
125:             */
126:            protected int getDomainUpperBound(double p) {
127:                return getUpperDomain(getSampleSize(), getNumberOfSuccesses());
128:            }
129:
130:            /**
131:             * Return the lowest domain value for the given hypergeometric distribution
132:             * parameters.
133:             * @param n the population size.
134:             * @param m number of successes in the population.
135:             * @param k the sample size.
136:             * @return the lowest domain value of the hypergeometric distribution.  
137:             */
138:            private int getLowerDomain(int n, int m, int k) {
139:                return Math.max(0, m - (n - k));
140:            }
141:
142:            /**
143:             * Access the number of successes.
144:             * @return the number of successes.
145:             */
146:            public int getNumberOfSuccesses() {
147:                return numberOfSuccesses;
148:            }
149:
150:            /**
151:             * Access the population size.
152:             * @return the population size.
153:             */
154:            public int getPopulationSize() {
155:                return populationSize;
156:            }
157:
158:            /**
159:             * Access the sample size.
160:             * @return the sample size.
161:             */
162:            public int getSampleSize() {
163:                return sampleSize;
164:            }
165:
166:            /**
167:             * Return the highest domain value for the given hypergeometric distribution
168:             * parameters.
169:             * @param m number of successes in the population.
170:             * @param k the sample size.
171:             * @return the highest domain value of the hypergeometric distribution.  
172:             */
173:            private int getUpperDomain(int m, int k) {
174:                return Math.min(k, m);
175:            }
176:
177:            /**
178:             * For this disbution, X, this method returns P(X = x).
179:             * 
180:             * @param x the value at which the PMF is evaluated.
181:             * @return PMF for this distribution. 
182:             */
183:            public double probability(int x) {
184:                double ret;
185:
186:                int n = getPopulationSize();
187:                int m = getNumberOfSuccesses();
188:                int k = getSampleSize();
189:
190:                int[] domain = getDomain(n, m, k);
191:                if (x < domain[0] || x > domain[1]) {
192:                    ret = 0.0;
193:                } else {
194:                    ret = probability(n, m, k, x);
195:                }
196:
197:                return ret;
198:            }
199:
200:            /**
201:             * For the disbution, X, defined by the given hypergeometric distribution
202:             * parameters, this method returns P(X = x).
203:             * 
204:             * @param n the population size.
205:             * @param m number of successes in the population.
206:             * @param k the sample size.
207:             * @param x the value at which the PMF is evaluated.
208:             * @return PMF for the distribution. 
209:             */
210:            private double probability(int n, int m, int k, int x) {
211:                return Math.exp(MathUtils.binomialCoefficientLog(m, x)
212:                        + MathUtils.binomialCoefficientLog(n - m, k - x)
213:                        - MathUtils.binomialCoefficientLog(n, k));
214:            }
215:
216:            /**
217:             * Modify the number of successes.
218:             * @param num the new number of successes.
219:             * @throws IllegalArgumentException if <code>num</code> is negative.
220:             */
221:            public void setNumberOfSuccesses(int num) {
222:                if (num < 0) {
223:                    throw new IllegalArgumentException(
224:                            "number of successes must be non-negative.");
225:                }
226:                numberOfSuccesses = num;
227:            }
228:
229:            /**
230:             * Modify the population size.
231:             * @param size the new population size.
232:             * @throws IllegalArgumentException if <code>size</code> is not positive.
233:             */
234:            public void setPopulationSize(int size) {
235:                if (size <= 0) {
236:                    throw new IllegalArgumentException(
237:                            "population size must be positive.");
238:                }
239:                populationSize = size;
240:            }
241:
242:            /**
243:             * Modify the sample size.
244:             * @param size the new sample size.
245:             * @throws IllegalArgumentException if <code>size</code> is negative.
246:             */
247:            public void setSampleSize(int size) {
248:                if (size < 0) {
249:                    throw new IllegalArgumentException(
250:                            "sample size must be non-negative.");
251:                }
252:                sampleSize = size;
253:            }
254:
255:            /**
256:             * For this disbution, X, this method returns P(X &ge; x).
257:             * @param x the value at which the CDF is evaluated.
258:             * @return upper tail CDF for this distribution.
259:             * @since 1.1
260:             */
261:            public double upperCumulativeProbability(int x) {
262:                double ret;
263:
264:                int n = getPopulationSize();
265:                int m = getNumberOfSuccesses();
266:                int k = getSampleSize();
267:
268:                int[] domain = getDomain(n, m, k);
269:                if (x < domain[0]) {
270:                    ret = 1.0;
271:                } else if (x > domain[1]) {
272:                    ret = 0.0;
273:                } else {
274:                    ret = innerCumulativeProbability(domain[1], x, -1, n, m, k);
275:                }
276:
277:                return ret;
278:            }
279:
280:            /**
281:             * For this disbution, X, this method returns P(x0 &le; X &le; x1).  This
282:             * probability is computed by summing the point probabilities for the values
283:             * x0, x0 + 1, x0 + 2, ..., x1, in the order directed by dx. 
284:             * @param x0 the inclusive, lower bound
285:             * @param x1 the inclusive, upper bound
286:             * @param dx the direction of summation. 1 indicates summing from x0 to x1.
287:             *           0 indicates summing from x1 to x0.
288:             * @param n the population size.
289:             * @param m number of successes in the population.
290:             * @param k the sample size.
291:             * @return P(x0 &le; X &le; x1). 
292:             */
293:            private double innerCumulativeProbability(int x0, int x1, int dx,
294:                    int n, int m, int k) {
295:                double ret = probability(n, m, k, x0);
296:                while (x0 != x1) {
297:                    x0 += dx;
298:                    ret += probability(n, m, k, x0);
299:                }
300:                return ret;
301:            }
302:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.