Source Code Cross Referenced for AbstractRandomGenerator.java in  » Science » Apache-commons-math-1.1 » org » apache » commons » math » random » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » Apache commons math 1.1 » org.apache.commons.math.random 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * Copyright 2005 The Apache Software Foundation.
003:         *
004:         * Licensed under the Apache License, Version 2.0 (the "License");
005:         * you may not use this file except in compliance with the License.
006:         * You may obtain a copy of the License at
007:         *
008:         *      http://www.apache.org/licenses/LICENSE-2.0
009:         *
010:         * Unless required by applicable law or agreed to in writing, software
011:         * distributed under the License is distributed on an "AS IS" BASIS,
012:         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
013:         * See the License for the specific language governing permissions and
014:         * limitations under the License.
015:         */
016:        package org.apache.commons.math.random;
017:
018:        /**
019:         * Abstract class implementing the {@link  RandomGenerator} interface.
020:         * Default implementations for all methods other than {@link #nextDouble()} and
021:         * {@link #setSeed(long)} are provided. 
022:         * <p>
023:         * All data generation methods are based on <code>nextDouble().</code>
024:         * Concrete implementations <strong>must</strong> override
025:         * this method and <strong>should</strong> provide better / more
026:         * performant implementations of the other methods if the underlying PRNG
027:         * supplies them.
028:         *
029:         * @since 1.1
030:         * @version $Revision: 209144 $ $Date: 2005-07-04 16:30:05 -0700 (Mon, 04 Jul 2005) $
031:         */
032:        public abstract class AbstractRandomGenerator implements 
033:                RandomGenerator {
034:
035:            /** 
036:             * Cached random normal value.  The default implementation for 
037:             * {@link #nextGaussian} generates pairs of values and this field caches the
038:             * second value so that the full algorithm is not executed for every
039:             * activation.  The value <code>Double.NaN</code> signals that there is
040:             * no cached value.  Use {@link #clear} to clear the cached value.
041:             */
042:            private double cachedNormalDeviate = Double.NaN;
043:
044:            /**
045:             * Construct a RandomGenerator.
046:             */
047:            public AbstractRandomGenerator() {
048:                super ();
049:
050:            }
051:
052:            /**
053:             * Clears the cache used by the default implementation of 
054:             * {@link #nextGaussian}. Implemementations that do not override the
055:             * default implementation of <code>nextGaussian</code> should call this
056:             * method in the implementation of {@link #setSeed(long)}
057:             */
058:            public void clear() {
059:                cachedNormalDeviate = Double.NaN;
060:            }
061:
062:            /**
063:             * Sets the seed of the underyling random number generator using a 
064:             * <code>long</code> seed.  Sequences of values generated starting with the
065:             * same seeds should be identical.
066:             * <p>
067:             * Implementations that do not override the default implementation of 
068:             * <code>nextGaussian</code> should include a call to {@link #clear} in the
069:             * implementation of this method.
070:             *
071:             * @param seed the seed value
072:             */
073:            public abstract void setSeed(long seed);
074:
075:            /**
076:             * Generates random bytes and places them into a user-supplied 
077:             * byte array.  The number of random bytes produced is equal to 
078:             * the length of the byte array.
079:             * <p>
080:             * The default implementation fills the array with bytes extracted from
081:             * random integers generated using {@link #nextInt}.
082:             * 
083:             * @param bytes the non-null byte array in which to put the 
084:             * random bytes
085:             */
086:            public void nextBytes(byte[] bytes) {
087:                int bytesOut = 0;
088:                while (bytesOut < bytes.length) {
089:                    int randInt = nextInt();
090:                    for (int i = 0; i < 3; i++) {
091:                        if (i > 0) {
092:                            randInt = randInt >> 8;
093:                        }
094:                        bytes[bytesOut++] = (byte) randInt;
095:                        if (bytesOut == bytes.length) {
096:                            return;
097:                        }
098:                    }
099:                }
100:            }
101:
102:            /**
103:             * Returns the next pseudorandom, uniformly distributed <code>int</code>
104:             * value from this random number generator's sequence.  
105:             * All 2<font size="-1"><sup>32</sup></font> possible <tt>int</tt> values
106:             * should be produced with  (approximately) equal probability. 
107:             * <p>
108:             * The default implementation provided here returns 
109:             * <pre>
110:             * <code>(int) (nextDouble() * Integer.MAX_VALUE)</code>
111:             * </pre>
112:             *
113:             * @return the next pseudorandom, uniformly distributed <code>int</code>
114:             *  value from this random number generator's sequence
115:             */
116:            public int nextInt() {
117:                return (int) (nextDouble() * Integer.MAX_VALUE);
118:            }
119:
120:            /**
121:             * Returns a pseudorandom, uniformly distributed <tt>int</tt> value
122:             * between 0 (inclusive) and the specified value (exclusive), drawn from
123:             * this random number generator's sequence. 
124:             * <p>  
125:             * The default implementation returns 
126:             * <pre>
127:             * <code>(int) (nextDouble() * n</code>
128:             * </pre>
129:             *
130:             * @param n the bound on the random number to be returned.  Must be
131:             * positive.
132:             * @return  a pseudorandom, uniformly distributed <tt>int</tt>
133:             * value between 0 (inclusive) and n (exclusive).
134:             * @throws IllegalArgumentException if n is not positive.
135:             */
136:            public int nextInt(int n) {
137:                if (n <= 0) {
138:                    throw new IllegalArgumentException(
139:                            "upper bound must be positive");
140:                }
141:                int result = (int) (nextDouble() * n);
142:                return result < n ? result : n - 1;
143:            }
144:
145:            /**
146:             * Returns the next pseudorandom, uniformly distributed <code>long</code>
147:             * value from this random number generator's sequence.  All 
148:             * 2<font size="-1"><sup>64</sup></font> possible <tt>long</tt> values 
149:             * should be produced with (approximately) equal probability. 
150:             * <p>  
151:             * The default implementation returns 
152:             * <pre>
153:             * <code>(long) (nextDouble() * Long.MAX_VALUE)</code>
154:             * </pre>
155:             *
156:             * @return  the next pseudorandom, uniformly distributed <code>long</code>
157:             *value from this random number generator's sequence
158:             */
159:            public long nextLong() {
160:                return (long) (nextDouble() * Long.MAX_VALUE);
161:            }
162:
163:            /**
164:             * Returns the next pseudorandom, uniformly distributed
165:             * <code>boolean</code> value from this random number generator's
166:             * sequence.  
167:             * <p>  
168:             * The default implementation returns 
169:             * <pre>
170:             * <code>nextDouble() <= 0.5</code>
171:             * </pre>
172:             * 
173:             * @return  the next pseudorandom, uniformly distributed
174:             * <code>boolean</code> value from this random number generator's
175:             * sequence
176:             */
177:            public boolean nextBoolean() {
178:                return nextDouble() <= 0.5;
179:            }
180:
181:            /**
182:             * Returns the next pseudorandom, uniformly distributed <code>float</code>
183:             * value between <code>0.0</code> and <code>1.0</code> from this random
184:             * number generator's sequence.  
185:             * <p>  
186:             * The default implementation returns 
187:             * <pre>
188:             * <code>(float) nextDouble() </code>
189:             * </pre>
190:             *
191:             * @return  the next pseudorandom, uniformly distributed <code>float</code>
192:             * value between <code>0.0</code> and <code>1.0</code> from this
193:             * random number generator's sequence
194:             */
195:            public float nextFloat() {
196:                return (float) nextDouble();
197:            }
198:
199:            /**
200:             * Returns the next pseudorandom, uniformly distributed 
201:             * <code>double</code> value between <code>0.0</code> and
202:             * <code>1.0</code> from this random number generator's sequence.  
203:             * <p>
204:             * This method provides the underlying source of random data used by the
205:             * other methods.   
206:             *
207:             * @return  the next pseudorandom, uniformly distributed 
208:             *  <code>double</code> value between <code>0.0</code> and
209:             *  <code>1.0</code> from this random number generator's sequence
210:             */
211:            public abstract double nextDouble();
212:
213:            /**
214:             * Returns the next pseudorandom, Gaussian ("normally") distributed
215:             * <code>double</code> value with mean <code>0.0</code> and standard
216:             * deviation <code>1.0</code> from this random number generator's sequence.
217:             * <p>
218:             * The default implementation uses the <em>Polar Method</em>
219:             * due to G.E.P. Box, M.E. Muller and G. Marsaglia, as described in 
220:             * D. Knuth, <u>The Art of Computer Programming</u>, 3.4.1C.
221:             * <p>
222:             * The algorithm generates a pair of independent random values.  One of
223:             * these is cached for reuse, so the full algorithm is not executed on each
224:             * activation.  Implementations that do not override this method should
225:             * make sure to call {@link #clear} to clear the cached value in the 
226:             * implementation of {@link #setSeed(long)}.
227:             * 
228:             * @return  the next pseudorandom, Gaussian ("normally") distributed
229:             * <code>double</code> value with mean <code>0.0</code> and
230:             * standard deviation <code>1.0</code> from this random number
231:             *  generator's sequence
232:             */
233:            public double nextGaussian() {
234:                if (!Double.isNaN(cachedNormalDeviate)) {
235:                    double dev = cachedNormalDeviate;
236:                    cachedNormalDeviate = Double.NaN;
237:                    return dev;
238:                }
239:                double v1 = 0;
240:                double v2 = 0;
241:                double s = 1;
242:                while (s >= 1) {
243:                    v1 = 2 * nextDouble() - 1;
244:                    v2 = 2 * nextDouble() - 1;
245:                    s = v1 * v1 + v2 * v2;
246:                }
247:                if (s != 0) {
248:                    s = Math.sqrt(-2 * Math.log(s) / s);
249:                }
250:                cachedNormalDeviate = v2 * s;
251:                return v1 * s;
252:            }
253:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.