Source Code Cross Referenced for ClassifierSplitModel.java in  » Science » weka » weka » classifiers » trees » j48 » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.classifiers.trees.j48 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         *    This program is free software; you can redistribute it and/or modify
003:         *    it under the terms of the GNU General Public License as published by
004:         *    the Free Software Foundation; either version 2 of the License, or
005:         *    (at your option) any later version.
006:         *
007:         *    This program is distributed in the hope that it will be useful,
008:         *    but WITHOUT ANY WARRANTY; without even the implied warranty of
009:         *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
010:         *    GNU General Public License for more details.
011:         *
012:         *    You should have received a copy of the GNU General Public License
013:         *    along with this program; if not, write to the Free Software
014:         *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
015:         */
016:
017:        /*
018:         *    ClassifierSplitModel.java
019:         *    Copyright (C) 1999 University of Waikato, Hamilton, New Zealand
020:         *
021:         */
022:
023:        package weka.classifiers.trees.j48;
024:
025:        import weka.core.Instance;
026:        import weka.core.Instances;
027:        import weka.core.Utils;
028:
029:        import java.io.Serializable;
030:
031:        /** 
032:         * Abstract class for classification models that can be used 
033:         * recursively to split the data.
034:         *
035:         * @author Eibe Frank (eibe@cs.waikato.ac.nz)
036:         * @version $Revision: 1.10 $
037:         */
038:        public abstract class ClassifierSplitModel implements  Cloneable,
039:                Serializable {
040:
041:            /** for serialization */
042:            private static final long serialVersionUID = 4280730118393457457L;
043:
044:            /** Distribution of class values. */
045:            protected Distribution m_distribution;
046:
047:            /** Number of created subsets. */
048:            protected int m_numSubsets;
049:
050:            /**
051:             * Allows to clone a model (shallow copy).
052:             */
053:            public Object clone() {
054:
055:                Object clone = null;
056:
057:                try {
058:                    clone = super .clone();
059:                } catch (CloneNotSupportedException e) {
060:                }
061:                return clone;
062:            }
063:
064:            /**
065:             * Builds the classifier split model for the given set of instances.
066:             *
067:             * @exception Exception if something goes wrong
068:             */
069:            public abstract void buildClassifier(Instances instances)
070:                    throws Exception;
071:
072:            /**
073:             * Checks if generated model is valid.
074:             */
075:            public final boolean checkModel() {
076:
077:                if (m_numSubsets > 0)
078:                    return true;
079:                else
080:                    return false;
081:            }
082:
083:            /**
084:             * Classifies a given instance.
085:             *
086:             * @exception Exception if something goes wrong
087:             */
088:            public final double classifyInstance(Instance instance)
089:                    throws Exception {
090:
091:                int theSubset;
092:
093:                theSubset = whichSubset(instance);
094:                if (theSubset > -1)
095:                    return (double) m_distribution.maxClass(theSubset);
096:                else
097:                    return (double) m_distribution.maxClass();
098:            }
099:
100:            /**
101:             * Gets class probability for instance.
102:             *
103:             * @exception Exception if something goes wrong
104:             */
105:            public double classProb(int classIndex, Instance instance,
106:                    int theSubset) throws Exception {
107:
108:                if (theSubset > -1) {
109:                    return m_distribution.prob(classIndex, theSubset);
110:                } else {
111:                    double[] weights = weights(instance);
112:                    if (weights == null) {
113:                        return m_distribution.prob(classIndex);
114:                    } else {
115:                        double prob = 0;
116:                        for (int i = 0; i < weights.length; i++) {
117:                            prob += weights[i]
118:                                    * m_distribution.prob(classIndex, i);
119:                        }
120:                        return prob;
121:                    }
122:                }
123:            }
124:
125:            /**
126:             * Gets class probability for instance.
127:             *
128:             * @exception Exception if something goes wrong
129:             */
130:            public double classProbLaplace(int classIndex, Instance instance,
131:                    int theSubset) throws Exception {
132:
133:                if (theSubset > -1) {
134:                    return m_distribution.laplaceProb(classIndex, theSubset);
135:                } else {
136:                    double[] weights = weights(instance);
137:                    if (weights == null) {
138:                        return m_distribution.laplaceProb(classIndex);
139:                    } else {
140:                        double prob = 0;
141:                        for (int i = 0; i < weights.length; i++) {
142:                            prob += weights[i]
143:                                    * m_distribution.laplaceProb(classIndex, i);
144:                        }
145:                        return prob;
146:                    }
147:                }
148:            }
149:
150:            /**
151:             * Returns coding costs of model. Returns 0 if not overwritten.
152:             */
153:            public double codingCost() {
154:
155:                return 0;
156:            }
157:
158:            /**
159:             * Returns the distribution of class values induced by the model.
160:             */
161:            public final Distribution distribution() {
162:
163:                return m_distribution;
164:            }
165:
166:            /**
167:             * Prints left side of condition satisfied by instances.
168:             *
169:             * @param data the data.
170:             */
171:            public abstract String leftSide(Instances data);
172:
173:            /**
174:             * Prints left side of condition satisfied by instances in subset index.
175:             */
176:            public abstract String rightSide(int index, Instances data);
177:
178:            /**
179:             * Prints label for subset index of instances (eg class).
180:             *
181:             * @exception Exception if something goes wrong
182:             */
183:            public final String dumpLabel(int index, Instances data)
184:                    throws Exception {
185:
186:                StringBuffer text;
187:
188:                text = new StringBuffer();
189:                text.append(((Instances) data).classAttribute().value(
190:                        m_distribution.maxClass(index)));
191:                text.append(" ("
192:                        + Utils.roundDouble(m_distribution.perBag(index), 2));
193:                if (Utils.gr(m_distribution.numIncorrect(index), 0))
194:                    text.append("/"
195:                            + Utils.roundDouble(m_distribution
196:                                    .numIncorrect(index), 2));
197:                text.append(")");
198:
199:                return text.toString();
200:            }
201:
202:            public final String sourceClass(int index, Instances data)
203:                    throws Exception {
204:
205:                System.err.println("sourceClass");
206:                return (new StringBuffer(m_distribution.maxClass(index)))
207:                        .toString();
208:            }
209:
210:            public abstract String sourceExpression(int index, Instances data);
211:
212:            /**
213:             * Prints the split model.
214:             *
215:             * @exception Exception if something goes wrong
216:             */
217:            public final String dumpModel(Instances data) throws Exception {
218:
219:                StringBuffer text;
220:                int i;
221:
222:                text = new StringBuffer();
223:                for (i = 0; i < m_numSubsets; i++) {
224:                    text.append(leftSide(data) + rightSide(i, data) + ": ");
225:                    text.append(dumpLabel(i, data) + "\n");
226:                }
227:                return text.toString();
228:            }
229:
230:            /**
231:             * Returns the number of created subsets for the split.
232:             */
233:            public final int numSubsets() {
234:
235:                return m_numSubsets;
236:            }
237:
238:            /**
239:             * Sets distribution associated with model.
240:             */
241:            public void resetDistribution(Instances data) throws Exception {
242:
243:                m_distribution = new Distribution(data, this );
244:            }
245:
246:            /**
247:             * Splits the given set of instances into subsets.
248:             *
249:             * @exception Exception if something goes wrong
250:             */
251:            public final Instances[] split(Instances data) throws Exception {
252:
253:                Instances[] instances = new Instances[m_numSubsets];
254:                double[] weights;
255:                double newWeight;
256:                Instance instance;
257:                int subset, i, j;
258:
259:                for (j = 0; j < m_numSubsets; j++)
260:                    instances[j] = new Instances((Instances) data, data
261:                            .numInstances());
262:                for (i = 0; i < data.numInstances(); i++) {
263:                    instance = ((Instances) data).instance(i);
264:                    weights = weights(instance);
265:                    subset = whichSubset(instance);
266:                    if (subset > -1)
267:                        instances[subset].add(instance);
268:                    else
269:                        for (j = 0; j < m_numSubsets; j++)
270:                            if (Utils.gr(weights[j], 0)) {
271:                                newWeight = weights[j] * instance.weight();
272:                                instances[j].add(instance);
273:                                instances[j].lastInstance()
274:                                        .setWeight(newWeight);
275:                            }
276:                }
277:                for (j = 0; j < m_numSubsets; j++)
278:                    instances[j].compactify();
279:
280:                return instances;
281:            }
282:
283:            /**
284:             * Returns weights if instance is assigned to more than one subset.
285:             * Returns null if instance is only assigned to one subset.
286:             */
287:            public abstract double[] weights(Instance instance);
288:
289:            /**
290:             * Returns index of subset instance is assigned to.
291:             * Returns -1 if instance is assigned to more than one subset.
292:             *
293:             * @exception Exception if something goes wrong
294:             */
295:            public abstract int whichSubset(Instance instance) throws Exception;
296:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.