Source Code Cross Referenced for Maths.java in  » Science » weka » weka » core » matrix » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Science » weka » weka.core.matrix 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * This software is a cooperative product of The MathWorks and the National
003:         * Institute of Standards and Technology (NIST) which has been released to the
004:         * public domain. Neither The MathWorks nor NIST assumes any responsibility
005:         * whatsoever for its use by other parties, and makes no guarantees, expressed
006:         * or implied, about its quality, reliability, or any other characteristic.
007:         */
008:
009:        /*
010:         * Maths.java
011:         * Copyright (C) 1999 The Mathworks and NIST
012:         *
013:         */
014:
015:        package weka.core.matrix;
016:
017:        import weka.core.Statistics;
018:
019:        import java.util.Random;
020:
021:        /**
022:         * Utility class.
023:         * <p/>
024:         * Adapted from the <a href="http://math.nist.gov/javanumerics/jama/" target="_blank">JAMA</a> package.
025:         *
026:         * @author The Mathworks and NIST 
027:         * @author Fracpete (fracpete at waikato dot ac dot nz)
028:         * @version $Revision: 1.2 $
029:         */
030:
031:        public class Maths {
032:
033:            /** The constant 1 / sqrt(2 pi) */
034:            public static final double PSI = 0.3989422804014327028632;
035:
036:            /** The constant - log( sqrt(2 pi) ) */
037:            public static final double logPSI = -0.9189385332046726695410;
038:
039:            /** Distribution type: undefined */
040:            public static final int undefinedDistribution = 0;
041:
042:            /** Distribution type: noraml */
043:            public static final int normalDistribution = 1;
044:
045:            /** Distribution type: chi-squared */
046:            public static final int chisqDistribution = 2;
047:
048:            /** 
049:             * sqrt(a^2 + b^2) without under/overflow. 
050:             */
051:            public static double hypot(double a, double b) {
052:                double r;
053:                if (Math.abs(a) > Math.abs(b)) {
054:                    r = b / a;
055:                    r = Math.abs(a) * Math.sqrt(1 + r * r);
056:                } else if (b != 0) {
057:                    r = a / b;
058:                    r = Math.abs(b) * Math.sqrt(1 + r * r);
059:                } else {
060:                    r = 0.0;
061:                }
062:                return r;
063:            }
064:
065:            /**
066:             *  Returns the square of a value
067:             *  @param x 
068:             *  @return the square
069:             */
070:            public static double square(double x) {
071:                return x * x;
072:            }
073:
074:            /* methods for normal distribution */
075:
076:            /**
077:             *  Returns the cumulative probability of the standard normal.
078:             *  @param x the quantile
079:             */
080:            public static double pnorm(double x) {
081:                return Statistics.normalProbability(x);
082:            }
083:
084:            /** 
085:             *  Returns the cumulative probability of a normal distribution.
086:             *  @param x the quantile
087:             *  @param mean the mean of the normal distribution
088:             *  @param sd the standard deviation of the normal distribution.
089:             */
090:            public static double pnorm(double x, double mean, double sd) {
091:                if (sd <= 0.0)
092:                    throw new IllegalArgumentException(
093:                            "standard deviation <= 0.0");
094:                return pnorm((x - mean) / sd);
095:            }
096:
097:            /** 
098:             *  Returns the cumulative probability of a set of normal distributions
099:             *  with different means.
100:             *  @param x the vector of quantiles
101:             *  @param mean the means of the normal distributions
102:             *  @param sd the standard deviation of the normal distribution.
103:             *  @return the cumulative probability */
104:            public static DoubleVector pnorm(double x, DoubleVector mean,
105:                    double sd) {
106:                DoubleVector p = new DoubleVector(mean.size());
107:
108:                for (int i = 0; i < mean.size(); i++) {
109:                    p.set(i, pnorm(x, mean.get(i), sd));
110:                }
111:                return p;
112:            }
113:
114:            /** Returns the density of the standard normal.
115:             *  @param x the quantile
116:             *  @return the density
117:             */
118:            public static double dnorm(double x) {
119:                return Math.exp(-x * x / 2.) * PSI;
120:            }
121:
122:            /** Returns the density value of a standard normal.
123:             *  @param x the quantile
124:             *  @param mean the mean of the normal distribution
125:             *  @param sd the standard deviation of the normal distribution.
126:             *  @return the density */
127:            public static double dnorm(double x, double mean, double sd) {
128:                if (sd <= 0.0)
129:                    throw new IllegalArgumentException(
130:                            "standard deviation <= 0.0");
131:                return dnorm((x - mean) / sd);
132:            }
133:
134:            /** Returns the density values of a set of normal distributions with
135:             *  different means.
136:             *  @param x the quantile
137:             *  @param mean the means of the normal distributions
138:             *  @param sd the standard deviation of the normal distribution.
139:             * @return the density */
140:            public static DoubleVector dnorm(double x, DoubleVector mean,
141:                    double sd) {
142:                DoubleVector den = new DoubleVector(mean.size());
143:
144:                for (int i = 0; i < mean.size(); i++) {
145:                    den.set(i, dnorm(x, mean.get(i), sd));
146:                }
147:                return den;
148:            }
149:
150:            /** Returns the log-density of the standard normal.
151:             *  @param x the quantile
152:             *  @return the density
153:             */
154:            public static double dnormLog(double x) {
155:                return logPSI - x * x / 2.;
156:            }
157:
158:            /** Returns the log-density value of a standard normal.
159:             *  @param x the quantile
160:             *  @param mean the mean of the normal distribution
161:             *  @param sd the standard deviation of the normal distribution.
162:             *  @return the density */
163:            public static double dnormLog(double x, double mean, double sd) {
164:                if (sd <= 0.0)
165:                    throw new IllegalArgumentException(
166:                            "standard deviation <= 0.0");
167:                return -Math.log(sd) + dnormLog((x - mean) / sd);
168:            }
169:
170:            /** Returns the log-density values of a set of normal distributions with
171:             *  different means.
172:             *  @param x the quantile
173:             *  @param mean the means of the normal distributions
174:             *  @param sd the standard deviation of the normal distribution.
175:             * @return the density */
176:            public static DoubleVector dnormLog(double x, DoubleVector mean,
177:                    double sd) {
178:                DoubleVector denLog = new DoubleVector(mean.size());
179:
180:                for (int i = 0; i < mean.size(); i++) {
181:                    denLog.set(i, dnormLog(x, mean.get(i), sd));
182:                }
183:                return denLog;
184:            }
185:
186:            /** 
187:             *  Generates a sample of a normal distribution.
188:             *  @param n the size of the sample
189:             *  @param mean the mean of the normal distribution
190:             *  @param sd the standard deviation of the normal distribution.
191:             *  @param random the random stream
192:             *  @return the sample
193:             */
194:            public static DoubleVector rnorm(int n, double mean, double sd,
195:                    Random random) {
196:                if (sd < 0.0)
197:                    throw new IllegalArgumentException(
198:                            "standard deviation < 0.0");
199:
200:                if (sd == 0.0)
201:                    return new DoubleVector(n, mean);
202:                DoubleVector v = new DoubleVector(n);
203:                for (int i = 0; i < n; i++)
204:                    v.set(i, (random.nextGaussian() + mean) / sd);
205:                return v;
206:            }
207:
208:            /* methods for Chi-square distribution */
209:
210:            /** Returns the cumulative probability of the Chi-squared distribution
211:             *  @param x the quantile
212:             */
213:            public static double pchisq(double x) {
214:                double xh = Math.sqrt(x);
215:                return pnorm(xh) - pnorm(-xh);
216:            }
217:
218:            /** Returns the cumulative probability of the noncentral Chi-squared
219:             *  distribution.
220:             *  @param x the quantile
221:             *  @param ncp the noncentral parameter */
222:            public static double pchisq(double x, double ncp) {
223:                double mean = Math.sqrt(ncp);
224:                double xh = Math.sqrt(x);
225:                return pnorm(xh - mean) - pnorm(-xh - mean);
226:            }
227:
228:            /** Returns the cumulative probability of a set of noncentral Chi-squared
229:             *  distributions.
230:             *  @param x the quantile
231:             *  @param ncp the noncentral parameters */
232:            public static DoubleVector pchisq(double x, DoubleVector ncp) {
233:                int n = ncp.size();
234:                DoubleVector p = new DoubleVector(n);
235:                double mean;
236:                double xh = Math.sqrt(x);
237:
238:                for (int i = 0; i < n; i++) {
239:                    mean = Math.sqrt(ncp.get(i));
240:                    p.set(i, pnorm(xh - mean) - pnorm(-xh - mean));
241:                }
242:                return p;
243:            }
244:
245:            /** Returns the density of the Chi-squared distribution.
246:             *  @param x the quantile
247:             *  @return the density
248:             */
249:            public static double dchisq(double x) {
250:                if (x == 0.0)
251:                    return Double.POSITIVE_INFINITY;
252:                double xh = Math.sqrt(x);
253:                return dnorm(xh) / xh;
254:            }
255:
256:            /** Returns the density of the noncentral Chi-squared distribution.
257:             *  @param x the quantile
258:             *  @param ncp the noncentral parameter
259:             */
260:            public static double dchisq(double x, double ncp) {
261:                if (ncp == 0.0)
262:                    return dchisq(x);
263:                double xh = Math.sqrt(x);
264:                double mean = Math.sqrt(ncp);
265:                return (dnorm(xh - mean) + dnorm(-xh - mean)) / (2 * xh);
266:            }
267:
268:            /** Returns the density of the noncentral Chi-squared distribution.
269:             *  @param x the quantile
270:             *  @param ncp the noncentral parameters 
271:             */
272:            public static DoubleVector dchisq(double x, DoubleVector ncp) {
273:                int n = ncp.size();
274:                DoubleVector d = new DoubleVector(n);
275:                double xh = Math.sqrt(x);
276:                double mean;
277:                for (int i = 0; i < n; i++) {
278:                    mean = Math.sqrt(ncp.get(i));
279:                    if (ncp.get(i) == 0.0)
280:                        d.set(i, dchisq(x));
281:                    else
282:                        d.set(i, (dnorm(xh - mean) + dnorm(-xh - mean))
283:                                / (2 * xh));
284:                }
285:                return d;
286:            }
287:
288:            /** Returns the log-density of the noncentral Chi-square distribution.
289:             *  @param x the quantile
290:             *  @return the density
291:             */
292:            public static double dchisqLog(double x) {
293:                if (x == 0.0)
294:                    return Double.POSITIVE_INFINITY;
295:                double xh = Math.sqrt(x);
296:                return dnormLog(xh) - Math.log(xh);
297:            }
298:
299:            /** Returns the log-density value of a noncentral Chi-square distribution.
300:             *  @param x the quantile
301:             *  @param ncp the noncentral parameter
302:             *  @return the density */
303:            public static double dchisqLog(double x, double ncp) {
304:                if (ncp == 0.0)
305:                    return dchisqLog(x);
306:                double xh = Math.sqrt(x);
307:                double mean = Math.sqrt(ncp);
308:                return Math.log(dnorm(xh - mean) + dnorm(-xh - mean))
309:                        - Math.log(2 * xh);
310:            }
311:
312:            /** Returns the log-density of a set of noncentral Chi-squared
313:             *  distributions.
314:             *  @param x the quantile
315:             *  @param ncp the noncentral parameters */
316:            public static DoubleVector dchisqLog(double x, DoubleVector ncp) {
317:                DoubleVector dLog = new DoubleVector(ncp.size());
318:                double xh = Math.sqrt(x);
319:                double mean;
320:
321:                for (int i = 0; i < ncp.size(); i++) {
322:                    mean = Math.sqrt(ncp.get(i));
323:                    if (ncp.get(i) == 0.0)
324:                        dLog.set(i, dchisqLog(x));
325:                    else
326:                        dLog.set(i, Math.log(dnorm(xh - mean)
327:                                + dnorm(-xh - mean))
328:                                - Math.log(2 * xh));
329:                }
330:                return dLog;
331:            }
332:
333:            /** 
334:             *  Generates a sample of a Chi-square distribution.
335:             *  @param n the size of the sample
336:             *  @param ncp the noncentral parameter
337:             *  @param random the random stream
338:             *  @return the sample
339:             */
340:            public static DoubleVector rchisq(int n, double ncp, Random random) {
341:                DoubleVector v = new DoubleVector(n);
342:                double mean = Math.sqrt(ncp);
343:                double x;
344:                for (int i = 0; i < n; i++) {
345:                    x = random.nextGaussian() + mean;
346:                    v.set(i, x * x);
347:                }
348:                return v;
349:            }
350:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.