Source Code Cross Referenced for Types.java in  » Scripting » Nice » nice » tools » typing » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Scripting » Nice » nice.tools.typing 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /**************************************************************************/
002:        /*                                N I C E                                 */
003:        /*             A high-level object-oriented research language             */
004:        /*                        (c) Daniel Bonniot 2004                         */
005:        /*                                                                        */
006:        /*  This program is free software; you can redistribute it and/or modify  */
007:        /*  it under the terms of the GNU General Public License as published by  */
008:        /*  the Free Software Foundation; either version 2 of the License, or     */
009:        /*  (at your option) any later version.                                   */
010:        /*                                                                        */
011:        /**************************************************************************/package nice.tools.typing;
012:
013:        /**
014:         Utilities for Nice types.
015:
016:         @author Daniel Bonniot (bonniots@users.sf.net)
017:         */
018:
019:        import mlsub.typing.*;
020:
021:        public final class Types {
022:            /****************************************************************
023:             * Predicates
024:             ****************************************************************/
025:
026:            public static boolean isVoid(mlsub.typing.Monotype m) {
027:                return equivalent(m).head() == PrimitiveType.voidTC;
028:            }
029:
030:            public static boolean isVoid(mlsub.typing.Polytype t) {
031:                return isVoid(t.getMonotype());
032:            }
033:
034:            public static boolean isPrimitive(TypeConstructor tc) {
035:                return nice.tools.code.Types.javaType(tc) instanceof  gnu.bytecode.PrimType;
036:            }
037:
038:            public static boolean isPrimitive(Monotype t) {
039:                return nice.tools.code.Types.javaType(t) instanceof  gnu.bytecode.PrimType;
040:            }
041:
042:            public static boolean isPrimitive(Polytype t) {
043:                return nice.tools.code.Types.javaType(t) instanceof  gnu.bytecode.PrimType;
044:            }
045:
046:            public static boolean isMaybe(Monotype m) {
047:                // This is prob. laxist, since getTC() might be different but equivalent to maybeTC (?)
048:                return (m instanceof  MonotypeConstructor)
049:                        && ((MonotypeConstructor) m).getTC() == PrimitiveType.maybeTC;
050:            }
051:
052:            public static boolean isSure(Monotype m) {
053:                // see comment by isMaybe (e?)
054:                return (m instanceof  MonotypeConstructor)
055:                        && ((MonotypeConstructor) m).getTC() == PrimitiveType.sureTC;
056:            }
057:
058:            public static boolean isDispatchable(Monotype m) {
059:                // Functional types are not dispatchable
060:                if (parameters(m) != null)
061:                    return false;
062:
063:                return !isPrimitive(m);
064:            }
065:
066:            /****************************************************************
067:             * Handling of option types
068:             ****************************************************************/
069:
070:            public static Monotype equivalent(Monotype m) {
071:                return rawType(m).equivalent();
072:            }
073:
074:            public static void setMarkedKind(Monotype m) {
075:                m.setKind(NullnessKind.instance);
076:            }
077:
078:            public static void makeMarkedType(MonotypeVar m) {
079:                m.setPersistentKind(NullnessKind.instance);
080:            }
081:
082:            /** return the type with nullness markers removed */
083:            public static Monotype rawType(Monotype m) {
084:                m = m.equivalent();
085:                if (m.getKind() != NullnessKind.instance
086:                        || m == UnknownMonotype.instance)
087:                    return m;
088:
089:                return ((MonotypeConstructor) m).getTP()[0];
090:            }
091:
092:            /** return the type with nullness markers removed */
093:            public static Monotype rawType(MonotypeConstructor mc) {
094:                return mc.getTP()[0];
095:            }
096:
097:            public static mlsub.typing.Monotype sureMonotype(
098:                    mlsub.typing.Monotype type) {
099:                return new mlsub.typing.MonotypeConstructor(
100:                        PrimitiveType.sureTC,
101:                        new mlsub.typing.Monotype[] { type });
102:            }
103:
104:            public static mlsub.typing.Monotype maybeMonotype(
105:                    mlsub.typing.Monotype type) {
106:                return new mlsub.typing.MonotypeConstructor(
107:                        PrimitiveType.maybeTC,
108:                        new mlsub.typing.Monotype[] { type });
109:            }
110:
111:            /****************************************************************
112:             * Functional types
113:             ****************************************************************/
114:
115:            /** @return the domain of a functional monotype with nullness marker */
116:            public static Monotype[] parameters(Monotype type) {
117:                return rawType(type).domain();
118:            }
119:
120:            /** @return the domain of a functional polytype with nullness marker */
121:            public static Monotype[] parameters(Polytype type) {
122:                return rawType(type.getMonotype()).domain();
123:            }
124:
125:            /** @return the codomain of a functional polytype with nullness marker */
126:            public static Monotype result(Polytype type) {
127:                return ((FunType) rawType(type.getMonotype())).codomain();
128:            }
129:
130:            /** @return the <code>rank</code>th type parameter of this type, or null. */
131:            public static Monotype getTypeParameter(Polytype type, int rank) {
132:                // This can only help
133:                type.simplify();
134:
135:                return getTypeParameter(type.getMonotype(), rank);
136:            }
137:
138:            /** 
139:                Transforms \forall T:K.U into \forall T:K.sure<U>
140:             */
141:            public static Polytype addSure(Polytype type) {
142:                return new Polytype(type.getConstraint(), Types
143:                        .sureMonotype(type.getMonotype()));
144:            }
145:
146:            /****************************************************************
147:             * Constructor
148:             ****************************************************************/
149:
150:            public static TypeConstructor constructor(Monotype type) {
151:                return equivalent(type).head();
152:            }
153:
154:            /**
155:               Return a concrete type constructor that represents as closely as
156:               possible the given type. 
157:
158:               The constraint that introduces type variables occuring in the type must be
159:               entered in the context before calling this method.
160:             */
161:            public static TypeConstructor concreteConstructor(Monotype type) {
162:                TypeConstructor res = constructor(type);
163:
164:                if (res == null || res.isConcrete())
165:                    return res;
166:
167:                return Typing.lowestInstance(res);
168:            }
169:
170:            public static Monotype zeroArgMonotype(TypeConstructor tc)
171:                    throws BadSizeEx {
172:                // Handle 'Class' as 'Class<?>'
173:                if (tc == PrimitiveType.classTC)
174:                    return new MonotypeConstructor(
175:                            tc,
176:                            new mlsub.typing.Monotype[] { UnknownMonotype.instance });
177:
178:                return new MonotypeConstructor(tc, null);
179:            }
180:
181:            public static Monotype unknownArgsMonotype(TypeConstructor tc)
182:                    throws BadSizeEx {
183:                if (tc.variance == null || tc.arity() == 0)
184:                    return new MonotypeConstructor(tc, null);
185:
186:                mlsub.typing.Monotype[] args = new mlsub.typing.Monotype[tc
187:                        .arity()];
188:                for (int i = 0; i < tc.arity(); i++)
189:                    args[i] = UnknownMonotype.instance;
190:
191:                return new MonotypeConstructor(tc, args);
192:            }
193:
194:            /****************************************************************
195:             * Type parameters
196:             ****************************************************************/
197:
198:            /** @return the <code>rank</code>th type parameter of this type, or null. */
199:            public static Monotype getTypeParameter(Monotype type, int rank) {
200:                // get rid of the nullness part
201:                type = rawType(type);
202:
203:                if (!(type instanceof  MonotypeConstructor))
204:                    return null;
205:
206:                Monotype[] parameters = ((MonotypeConstructor) type).getTP();
207:
208:                if (parameters == null || parameters.length <= rank)
209:                    return null;
210:                else
211:                    return parameters[rank];
212:            }
213:
214:            /****************************************************************
215:             * Domains
216:             ****************************************************************/
217:
218:            public static Domain domain(Polytype t) {
219:                // remove nullness marker
220:                Monotype[] m = parameters(t.getMonotype());
221:
222:                return new Domain(t.getConstraint(), m);
223:            }
224:
225:            /****************************************************************
226:             * Covariant specialization
227:             ****************************************************************/
228:
229:            /**
230:               @returns true if the spec type is a covariant specialization of origin,
231:                        false if the return type is not a subtype of the original subtype
232:             */
233:            public static boolean covariantSpecialization(Polytype spec,
234:                    Polytype origin) {
235:                boolean entered = false;
236:
237:                if (Constraint.hasBinders(spec.getConstraint())
238:                        || Constraint.hasBinders(origin.getConstraint())) {
239:                    entered = true;
240:                    Typing.enter();
241:                }
242:
243:                try {
244:
245:                    try {
246:                        if (entered) {
247:                            Polytype clonedSpec = spec.cloneType();
248:
249:                            Constraint.enter(origin.getConstraint());
250:                            Constraint.enter(clonedSpec.getConstraint());
251:
252:                            // For all argument types ...
253:                            Monotype[] args = MonotypeVar
254:                                    .news(parameters(origin).length);
255:                            Typing.introduce(args);
256:
257:                            // ... that can be used for both methods ...
258:                            Typing.leq(args, parameters(origin));
259:                            Typing.leq(args, parameters(clonedSpec));
260:
261:                            Typing.implies();
262:
263:                            // ... apply those args to the 'specialized' method ...
264:                            Constraint.enter(spec.getConstraint());
265:                            Typing.leq(args, parameters(spec));
266:                        }
267:
268:                        // ... and check that the result is indeed more precise.
269:                        Typing.leq(result(spec), result(origin));
270:                    } finally {
271:                        if (entered)
272:                            Typing.leave();
273:                    }
274:                } catch (TypingEx ex) {
275:                    return false;
276:                }
277:
278:                // OK, spec is a covariant specialization
279:                return true;
280:            }
281:
282:            /**
283:               @returns true if functional types t1 and t2 have a partly common domain.
284:                        that is, there exists some types that belong to both domains.
285:             */
286:            public static boolean domainsIntersect(Polytype t1, Polytype t2,
287:                    boolean dispatchable) {
288:                Typing.enter();
289:
290:                try {
291:
292:                    try {
293:
294:                        Constraint.enter(t1.getConstraint());
295:                        Constraint.enter(t2.getConstraint());
296:
297:                        // There exists argument types ...
298:                        Monotype[] args = MonotypeVar
299:                                .news(parameters(t2).length);
300:                        Typing.introduce(args);
301:
302:                        // ... that can be used for both methods ...
303:                        Typing.leq(args, parameters(t1), dispatchable);
304:                        Typing.leq(args, parameters(t2), dispatchable);
305:                    } finally {
306:                        Typing.leave();
307:                    }
308:                } catch (TypingEx ex) {
309:                    return false;
310:                }
311:
312:                // OK, there is an intersection
313:                return true;
314:            }
315:
316:            /**
317:               @returns true if the spec type specializes type parameters of the original
318:                 type (which can not be checked at runtime during dispatch, and therefore
319:                 should not count as overriding).
320:             */
321:            public static boolean typeParameterDispatch(Polytype spec,
322:                    Polytype origin) {
323:                Monotype[] originalParams = parameters(origin);
324:
325:                if (originalParams.length == 0)
326:                    return false;
327:
328:                Typing.enter();
329:                try {
330:
331:                    try {
332:                        Polytype clonedSpec = spec.cloneType();
333:
334:                        Constraint.enter(origin.getConstraint());
335:                        Constraint.enter(clonedSpec.getConstraint());
336:
337:                        // For all argument types ...
338:                        Monotype[] args = MonotypeVar
339:                                .news(originalParams.length);
340:                        Typing.introduce(args);
341:
342:                        // ... that can be used for the first method ...
343:                        Typing.leq(args, originalParams);
344:
345:                        // ... and that will be dispatched to the specialized method ...
346:                        Typing.leqHead(args, parameters(clonedSpec));
347:
348:                        Typing.implies();
349:
350:                        // ... check that those args fit in the 'specialized' method ...
351:                        Constraint.enter(spec.getConstraint());
352:                        Typing.leq(args, parameters(spec));
353:                    } finally {
354:                        Typing.leave();
355:                    }
356:                } catch (TypingEx ex) {
357:                    return true;
358:                }
359:
360:                // OK, no covariant dispatch
361:                return false;
362:            }
363:
364:            /****************************************************************
365:             * Merging
366:             ****************************************************************/
367:
368:            // <bonniot> this merge is not optimal since it does not search of a common supertype,
369:            // <bonniot> only if one is smaller than the other
370:            // <bonniot> but it should be useful already, and enough to test an algo that needs it
371:            // <arjanb> yeah it would handle 95% of the cases
372:            public static Monotype merge(Monotype m1, Monotype m2) {
373:                if (m1 == m2)
374:                    return m1;
375:
376:                Monotype raw = rawMerge(equivalent(m1), equivalent(m2));
377:                if (raw == null)
378:                    return null;
379:
380:                TypeConstructor marker;
381:                if (isSure(m1) && isSure(m2))
382:                    marker = PrimitiveType.sureTC;
383:                else
384:                    marker = PrimitiveType.maybeTC;
385:
386:                Monotype res = new MonotypeConstructor(marker,
387:                        new Monotype[] { raw });
388:                return res;
389:            }
390:
391:            private static Monotype rawMerge(Monotype raw1, Monotype raw2) {
392:                if (raw1 == raw2)
393:                    return raw1;
394:
395:                if (raw1 == TopMonotype.instance
396:                        || raw2 == TopMonotype.instance)
397:                    return TopMonotype.instance;
398:
399:                TypeConstructor head1 = raw1.head();
400:                TypeConstructor head2 = raw2.head();
401:
402:                TypeConstructor head;
403:                if (Typing.testRigidLeq(raw1.head(), raw2.head()))
404:                    head = raw2.head();
405:                else if (Typing.testRigidLeq(raw2.head(), raw1.head()))
406:                    head = raw1.head();
407:                else
408:                    return null;
409:
410:                Monotype[] args1 = ((MonotypeConstructor) raw1).getTP();
411:                Monotype[] args2 = ((MonotypeConstructor) raw2).getTP();
412:                Monotype[] args;
413:                if (args1 == null && args2 == null)
414:                    // no-arg type constructors
415:                    args = null;
416:                else {
417:                    // Resursively merge the type parameters.
418:                    args = new Monotype[args1.length];
419:                    for (int i = 0; i < args.length; i++) {
420:                        args[i] = merge(args1[i], args2[i]);
421:                        if (args[i] == null)
422:                            return null;
423:                    }
424:                }
425:
426:                return new MonotypeConstructor(head, args);
427:            }
428:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.