Source Code Cross Referenced for UTF8CharReader.java in  » Web-Server » Rimfaxe-Web-Server » org » apache » xerces » readers » Java Source Code / Java DocumentationJava Source Code and Java Documentation

Java Source Code / Java Documentation
1. 6.0 JDK Core
2. 6.0 JDK Modules
3. 6.0 JDK Modules com.sun
4. 6.0 JDK Modules com.sun.java
5. 6.0 JDK Modules sun
6. 6.0 JDK Platform
7. Ajax
8. Apache Harmony Java SE
9. Aspect oriented
10. Authentication Authorization
11. Blogger System
12. Build
13. Byte Code
14. Cache
15. Chart
16. Chat
17. Code Analyzer
18. Collaboration
19. Content Management System
20. Database Client
21. Database DBMS
22. Database JDBC Connection Pool
23. Database ORM
24. Development
25. EJB Server geronimo
26. EJB Server GlassFish
27. EJB Server JBoss 4.2.1
28. EJB Server resin 3.1.5
29. ERP CRM Financial
30. ESB
31. Forum
32. GIS
33. Graphic Library
34. Groupware
35. HTML Parser
36. IDE
37. IDE Eclipse
38. IDE Netbeans
39. Installer
40. Internationalization Localization
41. Inversion of Control
42. Issue Tracking
43. J2EE
44. JBoss
45. JMS
46. JMX
47. Library
48. Mail Clients
49. Net
50. Parser
51. PDF
52. Portal
53. Profiler
54. Project Management
55. Report
56. RSS RDF
57. Rule Engine
58. Science
59. Scripting
60. Search Engine
61. Security
62. Sevlet Container
63. Source Control
64. Swing Library
65. Template Engine
66. Test Coverage
67. Testing
68. UML
69. Web Crawler
70. Web Framework
71. Web Mail
72. Web Server
73. Web Services
74. Web Services apache cxf 2.0.1
75. Web Services AXIS2
76. Wiki Engine
77. Workflow Engines
78. XML
79. XML UI
Java
Java Tutorial
Java Open Source
Jar File Download
Java Articles
Java Products
Java by API
Photoshop Tutorials
Maya Tutorials
Flash Tutorials
3ds-Max Tutorials
Illustrator Tutorials
GIMP Tutorials
C# / C Sharp
C# / CSharp Tutorial
C# / CSharp Open Source
ASP.Net
ASP.NET Tutorial
JavaScript DHTML
JavaScript Tutorial
JavaScript Reference
HTML / CSS
HTML CSS Reference
C / ANSI-C
C Tutorial
C++
C++ Tutorial
Ruby
PHP
Python
Python Tutorial
Python Open Source
SQL Server / T-SQL
SQL Server / T-SQL Tutorial
Oracle PL / SQL
Oracle PL/SQL Tutorial
PostgreSQL
SQL / MySQL
MySQL Tutorial
VB.Net
VB.Net Tutorial
Flash / Flex / ActionScript
VBA / Excel / Access / Word
XML
XML Tutorial
Microsoft Office PowerPoint 2007 Tutorial
Microsoft Office Excel 2007 Tutorial
Microsoft Office Word 2007 Tutorial
Java Source Code / Java Documentation » Web Server » Rimfaxe Web Server » org.apache.xerces.readers 
Source Cross Referenced  Class Diagram Java Document (Java Doc) 


001:        /*
002:         * The Apache Software License, Version 1.1
003:         *
004:         *
005:         * Copyright (c) 1999 The Apache Software Foundation.  All rights 
006:         * reserved.
007:         *
008:         * Redistribution and use in source and binary forms, with or without
009:         * modification, are permitted provided that the following conditions
010:         * are met:
011:         *
012:         * 1. Redistributions of source code must retain the above copyright
013:         *    notice, this list of conditions and the following disclaimer. 
014:         *
015:         * 2. Redistributions in binary form must reproduce the above copyright
016:         *    notice, this list of conditions and the following disclaimer in
017:         *    the documentation and/or other materials provided with the
018:         *    distribution.
019:         *
020:         * 3. The end-user documentation included with the redistribution,
021:         *    if any, must include the following acknowledgment:  
022:         *       "This product includes software developed by the
023:         *        Apache Software Foundation (http://www.apache.org/)."
024:         *    Alternately, this acknowledgment may appear in the software itself,
025:         *    if and wherever such third-party acknowledgments normally appear.
026:         *
027:         * 4. The names "Xerces" and "Apache Software Foundation" must
028:         *    not be used to endorse or promote products derived from this
029:         *    software without prior written permission. For written 
030:         *    permission, please contact apache@apache.org.
031:         *
032:         * 5. Products derived from this software may not be called "Apache",
033:         *    nor may "Apache" appear in their name, without prior written
034:         *    permission of the Apache Software Foundation.
035:         *
036:         * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
037:         * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
038:         * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
039:         * DISCLAIMED.  IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
040:         * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
041:         * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
042:         * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
043:         * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
044:         * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
045:         * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
046:         * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
047:         * SUCH DAMAGE.
048:         * ====================================================================
049:         *
050:         * This software consists of voluntary contributions made by many
051:         * individuals on behalf of the Apache Software Foundation and was
052:         * originally based on software copyright (c) 1999, International
053:         * Business Machines, Inc., http://www.apache.org.  For more
054:         * information on the Apache Software Foundation, please see
055:         * <http://www.apache.org/>.
056:         */
057:
058:        package org.apache.xerces.readers;
059:
060:        import org.apache.xerces.framework.XMLErrorReporter;
061:        import org.apache.xerces.utils.CharDataChunk;
062:        import org.apache.xerces.utils.StringPool;
063:        import org.apache.xerces.utils.ImplementationMessages;
064:        import java.io.InputStream;
065:
066:        /**
067:         * Simple character-based version of a UTF8 reader.
068:         *
069:         * This class is not commonly used, but is provided as a much simplified
070:         * example of the UTF8Reader class that uses the AbstractCharReader to
071:         * perform all of the reader functions except for filling each buffer
072:         * of the character data when needed (fillCurrentChunk).  We read the
073:         * input data from an InputStream and perform end-of-line normalization
074:         * as we process that data.
075:         *
076:         * @version
077:         */
078:        final class UTF8CharReader extends AbstractCharReader {
079:            //
080:            //
081:            //
082:            UTF8CharReader(XMLEntityHandler entityHandler,
083:                    XMLErrorReporter errorReporter,
084:                    boolean sendCharDataAsCharArray, InputStream dataStream,
085:                    StringPool stringPool) throws Exception {
086:                super (entityHandler, errorReporter, sendCharDataAsCharArray,
087:                        stringPool);
088:                fInputStream = dataStream;
089:                fillCurrentChunk();
090:            }
091:
092:            //
093:            //
094:            //
095:            private InputStream fInputStream = null;
096:            //
097:            // When we fill a chunk there may be data that was read from the
098:            // input stream that has not been "processed".  We need to save
099:            // that data, and any in-progress state, between the calls to
100:            // fillCurrentChunk() in these instance variables.  
101:            //
102:            private boolean fCheckOverflow = false;
103:            private byte[] fOverflow = null;
104:            private int fOverflowOffset = 0;
105:            private int fOverflowEnd = 0;
106:            private int fOutputOffset = 0;
107:            private boolean fSkipLinefeed = false;
108:            private int fPartialMultiByteIn = 0;
109:            private byte[] fPartialMultiByteChar = new byte[3];
110:            private int fPartialSurrogatePair = 0;
111:            private boolean fPartialMultiByteResult = false;
112:
113:            //
114:            //
115:            //
116:            protected int fillCurrentChunk() throws Exception {
117:                //
118:                // See if we can find a way to reuse the buffer that may have been returned
119:                // with a recyled data chunk.
120:                //
121:                char[] recycledData = fCurrentChunk.toCharArray();
122:                //
123:                // If we have overflow from the last call, normalize from where
124:                // we left off, copying into the front of the output buffer.
125:                //
126:                fOutputOffset = 0;
127:                if (fCheckOverflow) {
128:                    //
129:                    // The fOverflowEnd should always be equal to CHUNK_SIZE, unless we hit
130:                    // EOF during the previous call.  Copy the remaining data to the front
131:                    // of the buffer and return it as the final chunk.
132:                    //
133:                    fMostRecentData = recycledData;
134:                    if (fOverflowEnd < CharDataChunk.CHUNK_SIZE) {
135:                        recycledData = null;
136:                        if (fOverflowEnd > 0) {
137:                            if (fMostRecentData == null
138:                                    || fMostRecentData.length < 1
139:                                            + fOverflowEnd - fOverflowOffset)
140:                                fMostRecentData = new char[1 + fOverflowEnd
141:                                        - fOverflowOffset];
142:                            copyNormalize(fOverflow, fOverflowOffset,
143:                                    fMostRecentData, fOutputOffset);
144:                        } else {
145:                            if (fMostRecentData == null)
146:                                fMostRecentData = new char[1];
147:                        }
148:                        fMostRecentData[fOutputOffset] = 0;
149:                        //
150:                        // Update our instance variables
151:                        //
152:                        fOverflow = null;
153:                        fLength += fOutputOffset;
154:                        fCurrentIndex = 0;
155:                        fCurrentChunk.setCharArray(fMostRecentData);
156:                        return (fMostRecentChar = fMostRecentData[0]);
157:                    }
158:                    if (fMostRecentData == null
159:                            || fMostRecentData.length < CharDataChunk.CHUNK_SIZE)
160:                        fMostRecentData = new char[CharDataChunk.CHUNK_SIZE];
161:                    else
162:                        recycledData = null;
163:                    copyNormalize(fOverflow, fOverflowOffset, fMostRecentData,
164:                            fOutputOffset);
165:                    fCheckOverflow = false;
166:                } else {
167:                    if (fOverflow == null)
168:                        fOverflow = new byte[CharDataChunk.CHUNK_SIZE];
169:                    fMostRecentData = null;
170:                }
171:                while (true) {
172:                    fOverflowOffset = 0;
173:                    fOverflowEnd = 0;
174:                    int capacity = CharDataChunk.CHUNK_SIZE;
175:                    int result = 0;
176:                    do {
177:                        try {
178:                            result = fInputStream.read(fOverflow, fOverflowEnd,
179:                                    capacity);
180:                        } catch (java.io.IOException ex) {
181:                            result = -1;
182:                        }
183:                        if (result == -1) {
184:                            //
185:                            // We have reached the end of the stream.
186:                            //
187:                            fInputStream.close();
188:                            fInputStream = null;
189:                            if (fMostRecentData == null) {
190:                                //
191:                                // There is no previous output data, so we know that all of the
192:                                // new input data will fit.
193:                                //
194:                                fMostRecentData = recycledData;
195:                                if (fMostRecentData == null
196:                                        || fMostRecentData.length < 1 + fOverflowEnd)
197:                                    fMostRecentData = new char[1 + fOverflowEnd];
198:                                else
199:                                    recycledData = null;
200:                                copyNormalize(fOverflow, fOverflowOffset,
201:                                        fMostRecentData, fOutputOffset);
202:                                fOverflow = null;
203:                                fMostRecentData[fOutputOffset] = 0;
204:                            } else {
205:                                //
206:                                // Copy the input data to the end of the output buffer.
207:                                //
208:                                boolean alldone = copyNormalize(fOverflow,
209:                                        fOverflowOffset, fMostRecentData,
210:                                        fOutputOffset);
211:                                if (alldone) {
212:                                    if (fOverflowEnd == CharDataChunk.CHUNK_SIZE) {
213:                                        //
214:                                        // Special case - everything fit into the overflow buffer,
215:                                        // except that there is no room for the nul char we use to
216:                                        // indicate EOF.  Set the overflow buffer length to zero.
217:                                        // On the next call to this method, we will detect this
218:                                        // case and which we will handle above .
219:                                        //
220:                                        fCheckOverflow = true;
221:                                        fOverflowOffset = 0;
222:                                        fOverflowEnd = 0;
223:                                    } else {
224:                                        //
225:                                        // It all fit into the output buffer.
226:                                        //
227:                                        fOverflow = null;
228:                                        fMostRecentData[fOutputOffset] = 0;
229:                                    }
230:                                } else {
231:                                    //
232:                                    // There is still input data left over, save the remaining data as
233:                                    // the overflow buffer for the next call.
234:                                    //
235:                                    fCheckOverflow = true;
236:                                }
237:                            }
238:                            break;
239:                        }
240:                        if (result > 0) {
241:                            fOverflowEnd += result;
242:                            capacity -= result;
243:                        }
244:                    } while (capacity > 0);
245:                    //
246:                    //
247:                    //
248:                    if (result == -1)
249:                        break;
250:                    if (fMostRecentData != null) {
251:                        boolean alldone = copyNormalize(fOverflow,
252:                                fOverflowOffset, fMostRecentData, fOutputOffset);
253:                        if (fOutputOffset == CharDataChunk.CHUNK_SIZE) {
254:                            //
255:                            // We filled the output buffer.
256:                            //
257:                            if (!alldone) {
258:                                //
259:                                // The input buffer will become the next overflow buffer.
260:                                //
261:                                fCheckOverflow = true;
262:                            }
263:                            break;
264:                        }
265:                    } else {
266:                        //
267:                        // Now normalize the end-of-line characters and see if we need to read more
268:                        // bytes to fill up the buffer.
269:                        //
270:                        fMostRecentData = recycledData;
271:                        if (fMostRecentData == null
272:                                || fMostRecentData.length < CharDataChunk.CHUNK_SIZE)
273:                            fMostRecentData = new char[CharDataChunk.CHUNK_SIZE];
274:                        else
275:                            recycledData = null;
276:                        copyNormalize(fOverflow, fOverflowOffset,
277:                                fMostRecentData, fOutputOffset);
278:                        if (fOutputOffset == CharDataChunk.CHUNK_SIZE) {
279:                            //
280:                            // The output buffer is full.  We can return now.
281:                            //
282:                            break;
283:                        }
284:                    }
285:                    //
286:                    // We will need to get another intput buffer to be able to fill the
287:                    // overflow buffer completely.
288:                    //
289:                }
290:                //
291:                // Update our instance variables
292:                //
293:                fLength += fOutputOffset;
294:                fCurrentIndex = 0;
295:                fCurrentChunk.setCharArray(fMostRecentData);
296:                return (fMostRecentChar = fMostRecentData[0]);
297:            }
298:
299:            //
300:            // Copy and normalize bytes from the overflow buffer into chars in our data buffer.
301:            //
302:            private boolean copyNormalize(byte[] in, int inOffset, char[] out,
303:                    int outOffset) throws Exception {
304:                //
305:                // Handle all edge cases before dropping into the inner loop.
306:                //
307:                int inEnd = fOverflowEnd;
308:                int outEnd = out.length;
309:                if (inOffset == inEnd)
310:                    return true;
311:                byte b = in[inOffset];
312:                if (fSkipLinefeed) {
313:                    fSkipLinefeed = false;
314:                    if (b == 0x0A) {
315:                        if (++inOffset == inEnd)
316:                            return exitNormalize(inOffset, outOffset, true);
317:                        b = in[inOffset];
318:                    }
319:                } else if (fPartialMultiByteIn > 0) {
320:                    if (!handlePartialMultiByteChar(b, in, inOffset, inEnd,
321:                            out, outOffset, outEnd))
322:                        return fPartialMultiByteResult;
323:                    inOffset = fOverflowOffset;
324:                    outOffset = fOutputOffset;
325:                    b = in[inOffset];
326:                }
327:                while (outOffset < outEnd) {
328:                    //
329:                    // Find the longest run that we can guarantee will not exceed the
330:                    // bounds of the outer loop.
331:                    //
332:                    int inCount = inEnd - inOffset;
333:                    int outCount = outEnd - outOffset;
334:                    if (inCount > outCount)
335:                        inCount = outCount;
336:                    inOffset++;
337:                    while (true) {
338:                        while (b == 0x0D || b < 0) {
339:                            if (b == 0x0D) {
340:                                out[outOffset++] = 0x0A;
341:                                if (inOffset == inEnd) {
342:                                    fSkipLinefeed = true;
343:                                    return exitNormalize(inOffset, outOffset,
344:                                            true);
345:                                }
346:                                b = in[inOffset];
347:                                if (b == 0x0A) {
348:                                    if (++inOffset == inEnd)
349:                                        return exitNormalize(inOffset,
350:                                                outOffset, true);
351:                                    b = in[inOffset];
352:                                }
353:                                if (outOffset == outEnd)
354:                                    return exitNormalize(inOffset, outOffset,
355:                                            false);
356:                            } else {
357:                                if (!handleMultiByteChar(b, in, inOffset,
358:                                        inEnd, out, outOffset, outEnd))
359:                                    return fPartialMultiByteResult;
360:                                inOffset = fOverflowOffset;
361:                                outOffset = fOutputOffset;
362:                                b = in[inOffset];
363:                            }
364:                            inCount = inEnd - inOffset;
365:                            outCount = outEnd - outOffset;
366:                            if (inCount > outCount)
367:                                inCount = outCount;
368:                            inOffset++;
369:                        }
370:                        while (true) {
371:                            out[outOffset++] = (char) b;
372:                            if (--inCount == 0)
373:                                break;
374:                            b = in[inOffset++];
375:                            if (b == 0x0D || b < 0)
376:                                break;
377:                        }
378:                        if (inCount == 0)
379:                            break;
380:                    }
381:                    if (inOffset == inEnd)
382:                        break;
383:                }
384:                return exitNormalize(inOffset, outOffset, inOffset == inEnd);
385:            }
386:
387:            //
388:            //
389:            //
390:            private boolean exitNormalize(int inOffset, int outOffset,
391:                    boolean result) {
392:                fOverflowOffset = inOffset;
393:                fOutputOffset = outOffset;
394:                return result;
395:            }
396:
397:            //
398:            //
399:            //
400:            private void savePartialMultiByte(int inCount, byte bz, byte by,
401:                    byte bx) {
402:                fPartialMultiByteIn = inCount;
403:                fPartialMultiByteChar[--inCount] = bz;
404:                fPartialMultiByteChar[--inCount] = by;
405:                fPartialMultiByteChar[--inCount] = bx;
406:            }
407:
408:            private void savePartialMultiByte(int inCount, byte bz, byte by) {
409:                fPartialMultiByteIn = inCount;
410:                fPartialMultiByteChar[--inCount] = bz;
411:                fPartialMultiByteChar[--inCount] = by;
412:            }
413:
414:            private void savePartialMultiByte(int inCount, byte bz) {
415:                fPartialMultiByteIn = inCount;
416:                fPartialMultiByteChar[--inCount] = bz;
417:            }
418:
419:            private boolean handleMultiByteChar(byte b, byte[] in,
420:                    int inOffset, int inEnd, char[] out, int outOffset,
421:                    int outEnd) throws Exception {
422:                if (inOffset == inEnd) {
423:                    savePartialMultiByte(1, b);
424:                    fPartialMultiByteResult = exitNormalize(inOffset,
425:                            outOffset, true);
426:                    return false;
427:                }
428:                byte b1 = in[inOffset++];
429:                if ((b1 & 0xc0) != 0x80) {
430:                    Object[] args = { Integer.toHexString(b & 0xff),
431:                            Integer.toHexString(b1 & 0xff) };
432:                    deferException(ImplementationMessages.ENC5, args, outOffset);
433:                    out[outOffset++] = 0;
434:                    return exitNormalize(inOffset, outOffset, true);
435:                }
436:                if ((b & 0xe0) == 0xc0) { // 110yyyyy 10xxxxxx
437:                    int ch = ((0x1f & b) << 6) + (0x3f & b1);
438:                    out[outOffset++] = (char) ch;
439:                    if (inOffset == inEnd || outOffset == outEnd) {
440:                        fPartialMultiByteResult = exitNormalize(inOffset,
441:                                outOffset, inOffset == inEnd);
442:                        return false;
443:                    }
444:                } else {
445:                    if (inOffset == inEnd) {
446:                        savePartialMultiByte(2, b1, b);
447:                        fPartialMultiByteResult = exitNormalize(inOffset,
448:                                outOffset, true);
449:                        return false;
450:                    }
451:                    byte b2 = in[inOffset++];
452:                    if ((b2 & 0xc0) != 0x80) {
453:                        Object[] args = { Integer.toHexString(b & 0xff),
454:                                Integer.toHexString(b1 & 0xff),
455:                                Integer.toHexString(b2 & 0xff) };
456:                        deferException(ImplementationMessages.ENC6, args,
457:                                outOffset);
458:                        out[outOffset++] = 0;
459:                        return exitNormalize(inOffset, outOffset, true);
460:                    }
461:                    if ((b & 0xf0) == 0xe0) { // 1110zzzz 10yyyyyy 10xxxxxx
462:                        int ch = ((0x0f & b) << 12) + ((0x3f & b1) << 6)
463:                                + (0x3f & b2);
464:                        out[outOffset++] = (char) ch;
465:                        if (inOffset == inEnd || outOffset == outEnd) {
466:                            fPartialMultiByteResult = exitNormalize(inOffset,
467:                                    outOffset, inOffset == inEnd);
468:                            return false;
469:                        }
470:                    } else {
471:                        if ((b & 0xf8) != 0xf0) {
472:                            Object[] args = { Integer.toHexString(b & 0xff) };
473:                            deferException(ImplementationMessages.ENC4, args,
474:                                    outOffset);
475:                            out[outOffset++] = 0;
476:                            return exitNormalize(inOffset, outOffset, true);
477:                        }
478:                        if (inOffset == inEnd) {
479:                            savePartialMultiByte(3, b2, b1, b);
480:                            fPartialMultiByteResult = exitNormalize(inOffset,
481:                                    outOffset, true);
482:                            return false;
483:                        }
484:                        byte b3 = in[inOffset++];
485:                        if ((b3 & 0xc0) != 0x80) {
486:                            Object[] args = { Integer.toHexString(b & 0xff),
487:                                    Integer.toHexString(b1 & 0xff),
488:                                    Integer.toHexString(b2 & 0xff),
489:                                    Integer.toHexString(b3 & 0xff) };
490:                            deferException(ImplementationMessages.ENC7, args,
491:                                    outOffset);
492:                            out[outOffset++] = 0;
493:                            return exitNormalize(inOffset, outOffset, true);
494:                        }
495:                        int ch = ((0x0f & b) << 18) + ((0x3f & b1) << 12)
496:                                + ((0x3f & b2) << 6) + (0x3f & b3);
497:                        if (ch >= 0x10000) {
498:                            out[outOffset++] = (char) (((ch - 0x00010000) >> 10) + 0xd800);
499:                            ch = (((ch - 0x00010000) & 0x3ff) + 0xdc00);
500:                            if (outOffset == outEnd) {
501:                                fPartialSurrogatePair = ch;
502:                                fPartialMultiByteResult = exitNormalize(
503:                                        inOffset, outOffset, inOffset == inEnd);
504:                                return false;
505:                            }
506:                        }
507:                        out[outOffset++] = (char) ch;
508:                        if (inOffset == inEnd || outOffset == outEnd) {
509:                            fPartialMultiByteResult = exitNormalize(inOffset,
510:                                    outOffset, inOffset == inEnd);
511:                            return false;
512:                        }
513:                    }
514:                }
515:                return exitNormalize(inOffset, outOffset, true);
516:            }
517:
518:            private boolean handlePartialMultiByteChar(byte b, byte[] in,
519:                    int inOffset, int inEnd, char[] out, int outOffset,
520:                    int outEnd) throws Exception {
521:                if (outOffset == outEnd) {
522:                    fPartialMultiByteResult = exitNormalize(inOffset,
523:                            outOffset, inOffset == inEnd);
524:                    return false;
525:                }
526:                if (fPartialMultiByteIn == 4) {
527:                    out[outOffset++] = (char) fPartialSurrogatePair;
528:                    if (outOffset == outEnd) {
529:                        fPartialMultiByteResult = exitNormalize(inOffset,
530:                                outOffset, false);
531:                        return false;
532:                    }
533:                    fOutputOffset = outOffset;
534:                    return true;
535:                }
536:                int byteIn = fPartialMultiByteIn;
537:                fPartialMultiByteIn = 0;
538:                byte b1 = 0;
539:                byte b2 = 0;
540:                byte b3 = 0;
541:                switch (byteIn) {
542:                case 1:
543:                    b1 = b;
544:                    break;
545:                case 2:
546:                    b2 = b;
547:                    break;
548:                case 3:
549:                    b3 = b;
550:                    break;
551:                }
552:                int i = byteIn;
553:                switch (byteIn) {
554:                case 3:
555:                    b2 = fPartialMultiByteChar[--i];
556:                case 2:
557:                    b1 = fPartialMultiByteChar[--i];
558:                case 1:
559:                    b = fPartialMultiByteChar[--i];
560:                }
561:                switch (byteIn) {
562:                case 1:
563:                    if ((b1 & 0xc0) != 0x80) {
564:                        Object[] args = { Integer.toHexString(b),
565:                                Integer.toHexString(b1) };
566:                        deferException(ImplementationMessages.ENC5, args,
567:                                outOffset);
568:                        out[outOffset++] = 0;
569:                        break;
570:                    }
571:                    // fall through
572:                case 2:
573:                    if ((b & 0xe0) == 0xc0) { // 110yyyyy 10xxxxxx
574:                        int ch = ((0x1f & b) << 6) + (0x3f & b1);
575:                        out[outOffset++] = (char) ch;
576:                        if (outOffset == outEnd) {
577:                            fPartialMultiByteResult = exitNormalize(inOffset,
578:                                    outOffset, false);
579:                            return false;
580:                        }
581:                        if (byteIn < 2 && ++inOffset == inEnd) {
582:                            fPartialMultiByteResult = exitNormalize(inOffset,
583:                                    outOffset, true);
584:                            return false;
585:                        }
586:                        break;
587:                    }
588:                    if (byteIn < 2) {
589:                        if (++inOffset == inEnd) {
590:                            savePartialMultiByte(2, b1);
591:                            fPartialMultiByteResult = exitNormalize(inOffset,
592:                                    outOffset, true);
593:                            return false;
594:                        }
595:                        b2 = in[inOffset];
596:                    }
597:                    if ((b2 & 0xc0) != 0x80) {
598:                        Object[] args = { Integer.toHexString(b),
599:                                Integer.toHexString(b1),
600:                                Integer.toHexString(b2) };
601:                        deferException(ImplementationMessages.ENC6, args,
602:                                outOffset);
603:                        out[outOffset++] = 0;
604:                        break;
605:                    }
606:                    // fall through
607:                case 3:
608:                    if ((b & 0xf0) == 0xe0) { // 1110zzzz 10yyyyyy 10xxxxxx
609:                        int ch = ((0x0f & b) << 12) + ((0x3f & b1) << 6)
610:                                + (0x3f & b2);
611:                        out[outOffset++] = (char) ch;
612:                        if (outOffset == outEnd) {
613:                            fPartialMultiByteResult = exitNormalize(inOffset,
614:                                    outOffset, false);
615:                            return false;
616:                        }
617:                        if (byteIn < 3 && ++inOffset == inEnd) {
618:                            fPartialMultiByteResult = exitNormalize(inOffset,
619:                                    outOffset, true);
620:                            return false;
621:                        }
622:                        break;
623:                    }
624:                    if (byteIn < 3) {
625:                        if ((b & 0xf8) != 0xf0) {
626:                            Object[] args = { Integer.toHexString(b) };
627:                            deferException(ImplementationMessages.ENC4, args,
628:                                    outOffset);
629:                            out[outOffset++] = 0;
630:                            break;
631:                        }
632:                        if (++inOffset == inEnd) {
633:                            savePartialMultiByte(3, b2, b1);
634:                            fPartialMultiByteResult = exitNormalize(inOffset,
635:                                    outOffset, true);
636:                            return false;
637:                        }
638:                        b3 = in[inOffset];
639:                    }
640:                    if ((b3 & 0xc0) != 0x80) {
641:                        Object[] args = { Integer.toHexString(b),
642:                                Integer.toHexString(b1),
643:                                Integer.toHexString(b2),
644:                                Integer.toHexString(b3) };
645:                        deferException(ImplementationMessages.ENC7, args,
646:                                outOffset);
647:                        out[outOffset++] = 0;
648:                        break;
649:                    }
650:                    int ch = ((0x0f & b) << 18) + ((0x3f & b1) << 12)
651:                            + ((0x3f & b2) << 6) + (0x3f & b3);
652:                    if (ch >= 0x10000) {
653:                        out[outOffset++] = (char) (((ch - 0x00010000) >> 10) + 0xd800);
654:                        ch = (((ch - 0x00010000) & 0x3ff) + 0xdc00);
655:                        if (outOffset == outEnd) {
656:                            fPartialSurrogatePair = ch;
657:                            fPartialMultiByteResult = exitNormalize(inOffset,
658:                                    outOffset, false);
659:                            return false;
660:                        }
661:                    }
662:                    out[outOffset++] = (char) ch;
663:                    if (outOffset == outEnd) {
664:                        fPartialMultiByteResult = exitNormalize(inOffset,
665:                                outOffset, false);
666:                        return false;
667:                    }
668:                    if (++inOffset == inEnd) {
669:                        fPartialMultiByteResult = exitNormalize(inOffset,
670:                                outOffset, true);
671:                        return false;
672:                    }
673:                    break;
674:                }
675:                return exitNormalize(inOffset, outOffset, true);
676:            }
677:        }
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.