polynomial.py :  » Business-Application » PDB2PQR » pdb2pqr-1.6 » contrib » numpy-1.1.0 » numpy » lib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » PDB2PQR 
PDB2PQR » pdb2pqr 1.6 » contrib » numpy 1.1.0 » numpy » lib » polynomial.py
"""
Functions to operate on polynomials.
"""

__all__ = ['poly', 'roots', 'polyint', 'polyder', 'polyadd',
           'polysub', 'polymul', 'polydiv', 'polyval', 'poly1d',
           'polyfit', 'RankWarning']

import re
import warnings
import numpy.core.numeric as NX

from numpy.core import isscalar,abs
from numpy.lib.getlimits import finfo
from numpy.lib.twodim_base import diag,vander
from numpy.lib.shape_base import hstack,atleast_1d
from numpy.lib.function_base import trim_zeros,sort_complex
eigvals = None
lstsq = None
_single_eps = finfo(NX.single).eps
_double_eps = finfo(NX.double).eps

class RankWarning(UserWarning):
    """Issued by polyfit when Vandermonde matrix is rank deficient.
    """
    pass

def get_linalg_funcs():
    "Look for linear algebra functions in numpy"
    global eigvals, lstsq
    from numpy.dual import eigvals,lstsq
    return

def _eigvals(arg):
    "Return the eigenvalues of the argument"
    try:
        return eigvals(arg)
    except TypeError:
        get_linalg_funcs()
        return eigvals(arg)

def _lstsq(X, y, rcond):
    "Do least squares on the arguments"
    try:
        return lstsq(X, y, rcond)
    except TypeError:
        get_linalg_funcs()
        return lstsq(X, y, rcond)

def poly(seq_of_zeros):
    """ Return a sequence representing a polynomial given a sequence of roots.

    If the input is a matrix, return the characteristic polynomial.

    Example:

        >>> b = roots([1,3,1,5,6])
        >>> poly(b)
        array([ 1.,  3.,  1.,  5.,  6.])

    """
    seq_of_zeros = atleast_1d(seq_of_zeros)
    sh = seq_of_zeros.shape
    if len(sh) == 2 and sh[0] == sh[1]:
        seq_of_zeros = _eigvals(seq_of_zeros)
    elif len(sh) ==1:
        pass
    else:
        raise ValueError, "input must be 1d or square 2d array."

    if len(seq_of_zeros) == 0:
        return 1.0

    a = [1]
    for k in range(len(seq_of_zeros)):
        a = NX.convolve(a, [1, -seq_of_zeros[k]], mode='full')

    if issubclass(a.dtype.type, NX.complexfloating):
        # if complex roots are all complex conjugates, the roots are real.
        roots = NX.asarray(seq_of_zeros, complex)
        pos_roots = sort_complex(NX.compress(roots.imag > 0, roots))
        neg_roots = NX.conjugate(sort_complex(
                                        NX.compress(roots.imag < 0,roots)))
        if (len(pos_roots) == len(neg_roots) and
            NX.alltrue(neg_roots == pos_roots)):
            a = a.real.copy()

    return a

def roots(p):
    """ Return the roots of the polynomial coefficients in p.

        The values in the rank-1 array p are coefficients of a polynomial.
        If the length of p is n+1 then the polynomial is
        p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
    """
    # If input is scalar, this makes it an array
    p = atleast_1d(p)
    if len(p.shape) != 1:
        raise ValueError,"Input must be a rank-1 array."

    # find non-zero array entries
    non_zero = NX.nonzero(NX.ravel(p))[0]

    # Return an empty array if polynomial is all zeros
    if len(non_zero) == 0:
        return NX.array([])

    # find the number of trailing zeros -- this is the number of roots at 0.
    trailing_zeros = len(p) - non_zero[-1] - 1

    # strip leading and trailing zeros
    p = p[int(non_zero[0]):int(non_zero[-1])+1]

    # casting: if incoming array isn't floating point, make it floating point.
    if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
        p = p.astype(float)

    N = len(p)
    if N > 1:
        # build companion matrix and find its eigenvalues (the roots)
        A = diag(NX.ones((N-2,), p.dtype), -1)
        A[0, :] = -p[1:] / p[0]
        roots = _eigvals(A)
    else:
        roots = NX.array([])

    # tack any zeros onto the back of the array
    roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
    return roots

def polyint(p, m=1, k=None):
    """Return the mth analytical integral of the polynomial p.

    If k is None, then zero-valued constants of integration are used.
    otherwise, k should be a list of length m (or a scalar if m=1) to
    represent the constants of integration to use for each integration
    (starting with k[0])
    """
    m = int(m)
    if m < 0:
        raise ValueError, "Order of integral must be positive (see polyder)"
    if k is None:
        k = NX.zeros(m, float)
    k = atleast_1d(k)
    if len(k) == 1 and m > 1:
        k = k[0]*NX.ones(m, float)
    if len(k) < m:
        raise ValueError, \
              "k must be a scalar or a rank-1 array of length 1 or >m."
    if m == 0:
        return p
    else:
        truepoly = isinstance(p, poly1d)
        p = NX.asarray(p)
        y = NX.zeros(len(p)+1, float)
        y[:-1] = p*1.0/NX.arange(len(p), 0, -1)
        y[-1] = k[0]
        val = polyint(y, m-1, k=k[1:])
        if truepoly:
            val = poly1d(val)
        return val

def polyder(p, m=1):
    """Return the mth derivative of the polynomial p.
    """
    m = int(m)
    truepoly = isinstance(p, poly1d)
    p = NX.asarray(p)
    n = len(p)-1
    y = p[:-1] * NX.arange(n, 0, -1)
    if m < 0:
        raise ValueError, "Order of derivative must be positive (see polyint)"
    if m == 0:
        return p
    else:
        val = polyder(y, m-1)
        if truepoly:
            val = poly1d(val)
        return val

def polyfit(x, y, deg, rcond=None, full=False):
    """Least squares polynomial fit.

    Do a best fit polynomial of degree 'deg' of 'x' to 'y'.  Return value is a
    vector of polynomial coefficients [pk ... p1 p0].  Eg, for n=2

        p2*x0^2 +  p1*x0 + p0 = y1
        p2*x1^2 +  p1*x1 + p0 = y1
        p2*x2^2 +  p1*x2 + p0 = y2
        .....
        p2*xk^2 +  p1*xk + p0 = yk

    Parameters
    ----------
    x : array_like
        1D vector of sample points.
    y : array_like
        1D vector or 2D array of values to fit. The values should run down the
        columes in the 2D case.
    deg : integer
        Degree of the fitting polynomial
    rcond: {None, float}, optional
        Relative condition number of the fit. Singular values smaller than this
        relative to the largest singular value will be ignored. The defaul value
        is len(x)*eps, where eps is the relative precision of the float type,
        about 2e-16 in most cases.
    full : {False, boolean}, optional
        Switch determining nature of return value. When it is False just the
        coefficients are returned, when True diagnostic information from the
        singular value decomposition is also returned.

    Returns
    -------
    coefficients, [residuals, rank, singular_values, rcond] : variable
        When full=False, only the coefficients are returned, running down the
        appropriate colume when y is a 2D array. When full=True, the rank of the
        scaled Vandermonde matrix, it's effective rank in light of the rcond
        value, its singular values, and the specified value of rcond are also
        returned.

    Warns
    -----
    RankWarning : if rank is reduced and not full output
        The warnings can be turned off by:
        >>> import numpy as np
        >>> import warnings
        >>> warnings.simplefilter('ignore',np.RankWarning)


    See Also
    --------
    polyval : computes polynomial values.

    Notes
    -----
    If X is a the Vandermonde Matrix computed from x (see
    http://mathworld.wolfram.com/VandermondeMatrix.html), then the
    polynomial least squares solution is given by the 'p' in

        X*p = y

    where X.shape is a matrix of dimensions (len(x), deg + 1), p is a vector of
    dimensions (deg + 1, 1), and y is a vector of dimensions (len(x), 1).

    This equation can be solved as

        p = (XT*X)^-1 * XT * y

    where XT is the transpose of X and -1 denotes the inverse. However, this
    method is susceptible to rounding errors and generally the singular value
    decomposition of the matrix X is preferred and that is what is done here.
    The singular value method takes a paramenter, 'rcond', which sets a limit on
    the relative size of the smallest singular value to be used in solving the
    equation. This may result in lowering the rank of the Vandermonde matrix, in
    which case a RankWarning is issued. If polyfit issues a RankWarning, try a
    fit of lower degree or replace x by x - x.mean(), both of which will
    generally improve the condition number. The routine already normalizes the
    vector x by its maximum absolute value to help in this regard. The rcond
    parameter can be set to a value smaller than its default, but the resulting
    fit may be spurious. The current default value of rcond is len(x)*eps, where
    eps is the relative precision of the floating type being used, generally
    around 1e-7 and 2e-16 for IEEE single and double precision respectively.
    This value of rcond is fairly conservative but works pretty well when x -
    x.mean() is used in place of x.


    DISCLAIMER: Power series fits are full of pitfalls for the unwary once the
    degree of the fit becomes large or the interval of sample points is badly
    centered. The problem is that the powers x**n are generally a poor basis for
    the polynomial functions on the sample interval, resulting in a Vandermonde
    matrix is ill conditioned and coefficients sensitive to rounding erros. The
    computation of the polynomial values will also sensitive to rounding errors.
    Consequently, the quality of the polynomial fit should be checked against
    the data whenever the condition number is large.  The quality of polynomial
    fits *can not* be taken for granted. If all you want to do is draw a smooth
    curve through the y values and polyfit is not doing the job, try centering
    the sample range or look into scipy.interpolate, which includes some nice
    spline fitting functions that may be of use.

    For more info, see
    http://mathworld.wolfram.com/LeastSquaresFittingPolynomial.html,
    but note that the k's and n's in the superscripts and subscripts
    on that page.  The linear algebra is correct, however.

    """
    order = int(deg) + 1
    x = NX.asarray(x) + 0.0
    y = NX.asarray(y) + 0.0

    # check arguments.
    if deg < 0 :
        raise ValueError, "expected deg >= 0"
    if x.ndim != 1:
        raise TypeError, "expected 1D vector for x"
    if x.size == 0:
        raise TypeError, "expected non-empty vector for x"
    if y.ndim < 1 or y.ndim > 2 :
        raise TypeError, "expected 1D or 2D array for y"
    if x.shape[0] != y.shape[0] :
        raise TypeError, "expected x and y to have same length"

    # set rcond
    if rcond is None :
        xtype = x.dtype
        if xtype == NX.single or xtype == NX.csingle :
            rcond = len(x)*_single_eps
        else :
            rcond = len(x)*_double_eps

    # scale x to improve condition number
    scale = abs(x).max()
    if scale != 0 :
        x /= scale

    # solve least squares equation for powers of x
    v = vander(x, order)
    c, resids, rank, s = _lstsq(v, y, rcond)

    # warn on rank reduction, which indicates an ill conditioned matrix
    if rank != order and not full:
        msg = "Polyfit may be poorly conditioned"
        warnings.warn(msg, RankWarning)

    # scale returned coefficients
    if scale != 0 :
        if c.ndim == 1 :
            c /= vander([scale], order)[0]
        else :
            c /= vander([scale], order).T

    if full :
        return c, resids, rank, s, rcond
    else :
        return c



def polyval(p, x):
    """Evaluate the polynomial p at x.

    If p is of length N, this function returns the value:

        p[0]*(x**N-1) + p[1]*(x**N-2) + ... + p[N-2]*x + p[N-1]

    If x is a sequence then p(x) will be returned for all elements of x. If x is
    another polynomial then the composite polynomial p(x) will be returned.

    Parameters
    ----------
    p : {array_like, poly1d}
        1D array of polynomial coefficients from highest degree to zero or an
        instance of poly1d.
    x : {array_like, poly1d}
        A number, a 1D array of numbers, or an instance of poly1d.

    Returns
    -------
    values : {array, poly1d}
        If either p or x is an instance of poly1d, then an instance of poly1d is
        returned, otherwise a 1D array is returned. In the case where x is a
        poly1d, the result is the composition of the two polynomials, i.e.,
        substitution is used.

    Notes
    -----
    Horners method is used to evaluate the polynomial. Even so, for polynomial
    if high degree the values may be inaccurate due to rounding errors. Use
    carefully.

    """
    p = NX.asarray(p)
    if isinstance(x, poly1d):
        y = 0
    else:
        x = NX.asarray(x)
        y = NX.zeros_like(x)
    for i in range(len(p)):
        y = x * y + p[i]
    return y

def polyadd(a1, a2):
    """Adds two polynomials represented as sequences
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 + a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) + a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 + NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val

def polysub(a1, a2):
    """Subtracts two polynomials represented as sequences
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1 = atleast_1d(a1)
    a2 = atleast_1d(a2)
    diff = len(a2) - len(a1)
    if diff == 0:
        val = a1 - a2
    elif diff > 0:
        zr = NX.zeros(diff, a1.dtype)
        val = NX.concatenate((zr, a1)) - a2
    else:
        zr = NX.zeros(abs(diff), a2.dtype)
        val = a1 - NX.concatenate((zr, a2))
    if truepoly:
        val = poly1d(val)
    return val


def polymul(a1, a2):
    """Multiplies two polynomials represented as sequences.
    """
    truepoly = (isinstance(a1, poly1d) or isinstance(a2, poly1d))
    a1,a2 = poly1d(a1),poly1d(a2)
    val = NX.convolve(a1, a2)
    if truepoly:
        val = poly1d(val)
    return val

def polydiv(u, v):
    """Computes q and r polynomials so that u(s) = q(s)*v(s) + r(s)
    and deg r < deg v.
    """
    truepoly = (isinstance(u, poly1d) or isinstance(u, poly1d))
    u = atleast_1d(u)
    v = atleast_1d(v)
    m = len(u) - 1
    n = len(v) - 1
    scale = 1. / v[0]
    q = NX.zeros((max(m-n+1,1),), float)
    r = u.copy()
    for k in range(0, m-n+1):
        d = scale * r[k]
        q[k] = d
        r[k:k+n+1] -= d*v
    while NX.allclose(r[0], 0, rtol=1e-14) and (r.shape[-1] > 1):
        r = r[1:]
    if truepoly:
        q = poly1d(q)
        r = poly1d(r)
    return q, r

_poly_mat = re.compile(r"[*][*]([0-9]*)")
def _raise_power(astr, wrap=70):
    n = 0
    line1 = ''
    line2 = ''
    output = ' '
    while 1:
        mat = _poly_mat.search(astr, n)
        if mat is None:
            break
        span = mat.span()
        power = mat.groups()[0]
        partstr = astr[n:span[0]]
        n = span[1]
        toadd2 = partstr + ' '*(len(power)-1)
        toadd1 = ' '*(len(partstr)-1) + power
        if ((len(line2)+len(toadd2) > wrap) or \
            (len(line1)+len(toadd1) > wrap)):
            output += line1 + "\n" + line2 + "\n "
            line1 = toadd1
            line2 = toadd2
        else:
            line2 += partstr + ' '*(len(power)-1)
            line1 += ' '*(len(partstr)-1) + power
    output += line1 + "\n" + line2
    return output + astr[n:]


class poly1d(object):
    """A one-dimensional polynomial class.

    p = poly1d([1,2,3]) constructs the polynomial x**2 + 2 x + 3

    p(0.5) evaluates the polynomial at the location
    p.r  is a list of roots
    p.c  is the coefficient array [1,2,3]
    p.order is the polynomial order (after leading zeros in p.c are removed)
    p[k] is the coefficient on the kth power of x (backwards from
         sequencing the coefficient array.

    polynomials can be added, substracted, multplied and divided (returns
         quotient and remainder).
    asarray(p) will also give the coefficient array, so polynomials can
         be used in all functions that accept arrays.

    p = poly1d([1,2,3], variable='lambda') will use lambda in the
    string representation of p.
    """
    coeffs = None
    order = None
    variable = None
    def __init__(self, c_or_r, r=0, variable=None):
        if isinstance(c_or_r, poly1d):
            for key in c_or_r.__dict__.keys():
                self.__dict__[key] = c_or_r.__dict__[key]
            if variable is not None:
                self.__dict__['variable'] = variable
            return
        if r:
            c_or_r = poly(c_or_r)
        c_or_r = atleast_1d(c_or_r)
        if len(c_or_r.shape) > 1:
            raise ValueError, "Polynomial must be 1d only."
        c_or_r = trim_zeros(c_or_r, trim='f')
        if len(c_or_r) == 0:
            c_or_r = NX.array([0.])
        self.__dict__['coeffs'] = c_or_r
        self.__dict__['order'] = len(c_or_r) - 1
        if variable is None:
            variable = 'x'
        self.__dict__['variable'] = variable

    def __array__(self, t=None):
        if t:
            return NX.asarray(self.coeffs, t)
        else:
            return NX.asarray(self.coeffs)

    def __repr__(self):
        vals = repr(self.coeffs)
        vals = vals[6:-1]
        return "poly1d(%s)" % vals

    def __len__(self):
        return self.order

    def __str__(self):
        thestr = "0"
        var = self.variable

        # Remove leading zeros
        coeffs = self.coeffs[NX.logical_or.accumulate(self.coeffs != 0)]
        N = len(coeffs)-1

        for k in range(len(coeffs)):
            coefstr ='%.4g' % abs(coeffs[k])
            if coefstr[-4:] == '0000':
                coefstr = coefstr[:-5]
            power = (N-k)
            if power == 0:
                if coefstr != '0':
                    newstr = '%s' % (coefstr,)
                else:
                    if k == 0:
                        newstr = '0'
                    else:
                        newstr = ''
            elif power == 1:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = var
                else:
                    newstr = '%s %s' % (coefstr, var)
            else:
                if coefstr == '0':
                    newstr = ''
                elif coefstr == 'b':
                    newstr = '%s**%d' % (var, power,)
                else:
                    newstr = '%s %s**%d' % (coefstr, var, power)

            if k > 0:
                if newstr != '':
                    if coeffs[k] < 0:
                        thestr = "%s - %s" % (thestr, newstr)
                    else:
                        thestr = "%s + %s" % (thestr, newstr)
            elif (k == 0) and (newstr != '') and (coeffs[k] < 0):
                thestr = "-%s" % (newstr,)
            else:
                thestr = newstr
        return _raise_power(thestr)


    def __call__(self, val):
        return polyval(self.coeffs, val)

    def __neg__(self):
        return poly1d(-self.coeffs)

    def __pos__(self):
        return self

    def __mul__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs * other)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __rmul__(self, other):
        if isscalar(other):
            return poly1d(other * self.coeffs)
        else:
            other = poly1d(other)
            return poly1d(polymul(self.coeffs, other.coeffs))

    def __add__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __radd__(self, other):
        other = poly1d(other)
        return poly1d(polyadd(self.coeffs, other.coeffs))

    def __pow__(self, val):
        if not isscalar(val) or int(val) != val or val < 0:
            raise ValueError, "Power to non-negative integers only."
        res = [1]
        for _ in range(val):
            res = polymul(self.coeffs, res)
        return poly1d(res)

    def __sub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(self.coeffs, other.coeffs))

    def __rsub__(self, other):
        other = poly1d(other)
        return poly1d(polysub(other.coeffs, self.coeffs))

    def __div__(self, other):
        if isscalar(other):
            return poly1d(self.coeffs/other)
        else:
            other = poly1d(other)
            return polydiv(self, other)

    def __rdiv__(self, other):
        if isscalar(other):
            return poly1d(other/self.coeffs)
        else:
            other = poly1d(other)
            return polydiv(other, self)

    def __eq__(self, other):
        return NX.alltrue(self.coeffs == other.coeffs)

    def __ne__(self, other):
        return NX.any(self.coeffs != other.coeffs)

    def __setattr__(self, key, val):
        raise ValueError, "Attributes cannot be changed this way."

    def __getattr__(self, key):
        if key in ['r', 'roots']:
            return roots(self.coeffs)
        elif key in ['c','coef','coefficients']:
            return self.coeffs
        elif key in ['o']:
            return self.order
        else:
            try:
                return self.__dict__[key]
            except KeyError:
                raise AttributeError("'%s' has no attribute '%s'" % (self.__class__, key))

    def __getitem__(self, val):
        ind = self.order - val
        if val > self.order:
            return 0
        if val < 0:
            return 0
        return self.coeffs[ind]

    def __setitem__(self, key, val):
        ind = self.order - key
        if key < 0:
            raise ValueError, "Does not support negative powers."
        if key > self.order:
            zr = NX.zeros(key-self.order, self.coeffs.dtype)
            self.__dict__['coeffs'] = NX.concatenate((zr, self.coeffs))
            self.__dict__['order'] = key
            ind = 0
        self.__dict__['coeffs'][ind] = val
        return

    def __iter__(self):
        return iter(self.coeffs)

    def integ(self, m=1, k=0):
        """Return the mth analytical integral of this polynomial.
        See the documentation for polyint.
        """
        return poly1d(polyint(self.coeffs, m=m, k=k))

    def deriv(self, m=1):
        """Return the mth derivative of this polynomial.
        """
        return poly1d(polyder(self.coeffs, m=m))

# Stuff to do on module import

warnings.simplefilter('always',RankWarning)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.