test_function_base.py :  » Business-Application » PDB2PQR » pdb2pqr-1.6 » contrib » numpy-1.1.0 » numpy » lib » tests » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » PDB2PQR 
PDB2PQR » pdb2pqr 1.6 » contrib » numpy 1.1.0 » numpy » lib » tests » test_function_base.py
import sys

from numpy.testing import *
set_package_path()
import numpy.lib;reload(numpy.lib)
from numpy.lib import *
from numpy.core import *

del sys.path[0]

class TestAny(NumpyTestCase):
    def check_basic(self):
        y1 = [0,0,1,0]
        y2 = [0,0,0,0]
        y3 = [1,0,1,0]
        assert(any(y1))
        assert(any(y3))
        assert(not any(y2))

    def check_nd(self):
        y1 = [[0,0,0],[0,1,0],[1,1,0]]
        assert(any(y1))
        assert_array_equal(sometrue(y1,axis=0),[1,1,0])
        assert_array_equal(sometrue(y1,axis=1),[0,1,1])

class TestAll(NumpyTestCase):
    def check_basic(self):
        y1 = [0,1,1,0]
        y2 = [0,0,0,0]
        y3 = [1,1,1,1]
        assert(not all(y1))
        assert(all(y3))
        assert(not all(y2))
        assert(all(~array(y2)))

    def check_nd(self):
        y1 = [[0,0,1],[0,1,1],[1,1,1]]
        assert(not all(y1))
        assert_array_equal(alltrue(y1,axis=0),[0,0,1])
        assert_array_equal(alltrue(y1,axis=1),[0,0,1])

class TestAverage(NumpyTestCase):
    def check_basic(self):
        y1 = array([1,2,3])
        assert(average(y1,axis=0) == 2.)
        y2 = array([1.,2.,3.])
        assert(average(y2,axis=0) == 2.)
        y3 = [0.,0.,0.]
        assert(average(y3,axis=0) == 0.)

        y4 = ones((4,4))
        y4[0,1] = 0
        y4[1,0] = 2
        assert_almost_equal(y4.mean(0), average(y4, 0))
        assert_almost_equal(y4.mean(1), average(y4, 1))

        y5 = rand(5,5)
        assert_almost_equal(y5.mean(0), average(y5, 0))
        assert_almost_equal(y5.mean(1), average(y5, 1))

        y6 = matrix(rand(5,5))
        assert_array_equal(y6.mean(0), average(y6,0))

    def check_weights(self):
        y = arange(10)
        w = arange(10)
        assert_almost_equal(average(y, weights=w), (arange(10)**2).sum()*1./arange(10).sum())

        y1 = array([[1,2,3],[4,5,6]])
        w0 = [1,2]
        actual = average(y1,weights=w0,axis=0)
        desired = array([3.,4.,5.])
        assert_almost_equal(actual, desired)


        w1 = [0,0,1]
        desired = array([3., 6.])
        assert_almost_equal(average(y1, weights=w1, axis=1), desired)

        # This should raise an error. Can we test for that ?
        # assert_equal(average(y1, weights=w1), 9./2.)


        # 2D Case
        w2 = [[0,0,1],[0,0,2]]
        desired = array([3., 6.])
        assert_array_equal(average(y1, weights=w2, axis=1), desired)

        assert_equal(average(y1, weights=w2), 5.)


    def check_returned(self):
        y = array([[1,2,3],[4,5,6]])

        # No weights
        avg, scl = average(y, returned=True)
        assert_equal(scl, 6.)

        avg, scl = average(y, 0, returned=True)
        assert_array_equal(scl, array([2.,2.,2.]))

        avg, scl = average(y, 1, returned=True)
        assert_array_equal(scl, array([3.,3.]))

        # With weights
        w0 = [1,2]
        avg, scl = average(y, weights=w0, axis=0, returned=True)
        assert_array_equal(scl, array([3., 3., 3.]))

        w1 = [1,2,3]
        avg, scl = average(y, weights=w1, axis=1, returned=True)
        assert_array_equal(scl, array([6., 6.]))

        w2 = [[0,0,1],[1,2,3]]
        avg, scl = average(y, weights=w2, axis=1, returned=True)
        assert_array_equal(scl, array([1.,6.]))


class TestSelect(NumpyTestCase):
    def _select(self,cond,values,default=0):
        output = []
        for m in range(len(cond)):
            output += [V[m] for V,C in zip(values,cond) if C[m]] or [default]
        return output

    def check_basic(self):
        choices = [array([1,2,3]),
                   array([4,5,6]),
                   array([7,8,9])]
        conditions = [array([0,0,0]),
                      array([0,1,0]),
                      array([0,0,1])]
        assert_array_equal(select(conditions,choices,default=15),
                           self._select(conditions,choices,default=15))

        assert_equal(len(choices),3)
        assert_equal(len(conditions),3)

class TestLogspace(NumpyTestCase):
    def check_basic(self):
        y = logspace(0,6)
        assert(len(y)==50)
        y = logspace(0,6,num=100)
        assert(y[-1] == 10**6)
        y = logspace(0,6,endpoint=0)
        assert(y[-1] < 10**6)
        y = logspace(0,6,num=7)
        assert_array_equal(y,[1,10,100,1e3,1e4,1e5,1e6])

class TestLinspace(NumpyTestCase):
    def check_basic(self):
        y = linspace(0,10)
        assert(len(y)==50)
        y = linspace(2,10,num=100)
        assert(y[-1] == 10)
        y = linspace(2,10,endpoint=0)
        assert(y[-1] < 10)
        y,st = linspace(2,10,retstep=1)
        assert_almost_equal(st,8/49.0)
        assert_array_almost_equal(y,mgrid[2:10:50j],13)

    def check_corner(self):
        y = list(linspace(0,1,1))
        assert y == [0.0], y
        y = list(linspace(0,1,2.5))
        assert y == [0.0, 1.0]

    def check_type(self):
        t1 = linspace(0,1,0).dtype
        t2 = linspace(0,1,1).dtype
        t3 = linspace(0,1,2).dtype
        assert_equal(t1, t2)
        assert_equal(t2, t3)

class TestInsert(NumpyTestCase):
    def check_basic(self):
        a = [1,2,3]
        assert_equal(insert(a,0,1), [1,1,2,3])
        assert_equal(insert(a,3,1), [1,2,3,1])
        assert_equal(insert(a,[1,1,1],[1,2,3]), [1,1,2,3,2,3])

class TestAmax(NumpyTestCase):
    def check_basic(self):
        a = [3,4,5,10,-3,-5,6.0]
        assert_equal(amax(a),10.0)
        b = [[3,6.0, 9.0],
             [4,10.0,5.0],
             [8,3.0,2.0]]
        assert_equal(amax(b,axis=0),[8.0,10.0,9.0])
        assert_equal(amax(b,axis=1),[9.0,10.0,8.0])

class TestAmin(NumpyTestCase):
    def check_basic(self):
        a = [3,4,5,10,-3,-5,6.0]
        assert_equal(amin(a),-5.0)
        b = [[3,6.0, 9.0],
             [4,10.0,5.0],
             [8,3.0,2.0]]
        assert_equal(amin(b,axis=0),[3.0,3.0,2.0])
        assert_equal(amin(b,axis=1),[3.0,4.0,2.0])

class TestPtp(NumpyTestCase):
    def check_basic(self):
        a = [3,4,5,10,-3,-5,6.0]
        assert_equal(ptp(a,axis=0),15.0)
        b = [[3,6.0, 9.0],
             [4,10.0,5.0],
             [8,3.0,2.0]]
        assert_equal(ptp(b,axis=0),[5.0,7.0,7.0])
        assert_equal(ptp(b,axis=-1),[6.0,6.0,6.0])

class TestCumsum(NumpyTestCase):
    def check_basic(self):
        ba = [1,2,10,11,6,5,4]
        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
        for ctype in [int8,uint8,int16,uint16,int32,uint32,
                      float32,float64,complex64,complex128]:
            a = array(ba,ctype)
            a2 = array(ba2,ctype)
            assert_array_equal(cumsum(a,axis=0), array([1,3,13,24,30,35,39],ctype))
            assert_array_equal(cumsum(a2,axis=0), array([[1,2,3,4],[6,8,10,13],
                                                         [16,11,14,18]],ctype))
            assert_array_equal(cumsum(a2,axis=1),
                               array([[1,3,6,10],
                                      [5,11,18,27],
                                      [10,13,17,22]],ctype))

class TestProd(NumpyTestCase):
    def check_basic(self):
        ba = [1,2,10,11,6,5,4]
        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
        for ctype in [int16,uint16,int32,uint32,
                      float32,float64,complex64,complex128]:
            a = array(ba,ctype)
            a2 = array(ba2,ctype)
            if ctype in ['1', 'b']:
                self.failUnlessRaises(ArithmeticError, prod, a)
                self.failUnlessRaises(ArithmeticError, prod, a2, 1)
                self.failUnlessRaises(ArithmeticError, prod, a)
            else:
                assert_equal(prod(a,axis=0),26400)
                assert_array_equal(prod(a2,axis=0),
                                   array([50,36,84,180],ctype))
                assert_array_equal(prod(a2,axis=-1),array([24, 1890, 600],ctype))

class TestCumprod(NumpyTestCase):
    def check_basic(self):
        ba = [1,2,10,11,6,5,4]
        ba2 = [[1,2,3,4],[5,6,7,9],[10,3,4,5]]
        for ctype in [int16,uint16,int32,uint32,
                      float32,float64,complex64,complex128]:
            a = array(ba,ctype)
            a2 = array(ba2,ctype)
            if ctype in ['1', 'b']:
                self.failUnlessRaises(ArithmeticError, cumprod, a)
                self.failUnlessRaises(ArithmeticError, cumprod, a2, 1)
                self.failUnlessRaises(ArithmeticError, cumprod, a)
            else:
                assert_array_equal(cumprod(a,axis=-1),
                                   array([1, 2, 20, 220,
                                          1320, 6600, 26400],ctype))
                assert_array_equal(cumprod(a2,axis=0),
                                   array([[ 1,  2,  3,   4],
                                          [ 5, 12, 21,  36],
                                          [50, 36, 84, 180]],ctype))
                assert_array_equal(cumprod(a2,axis=-1),
                                   array([[ 1,  2,   6,   24],
                                          [ 5, 30, 210, 1890],
                                          [10, 30, 120,  600]],ctype))

class TestDiff(NumpyTestCase):
    def check_basic(self):
        x = [1,4,6,7,12]
        out = array([3,2,1,5])
        out2 = array([-1,-1,4])
        out3 = array([0,5])
        assert_array_equal(diff(x),out)
        assert_array_equal(diff(x,n=2),out2)
        assert_array_equal(diff(x,n=3),out3)

    def check_nd(self):
        x = 20*rand(10,20,30)
        out1 = x[:,:,1:] - x[:,:,:-1]
        out2 = out1[:,:,1:] - out1[:,:,:-1]
        out3 = x[1:,:,:] - x[:-1,:,:]
        out4 = out3[1:,:,:] - out3[:-1,:,:]
        assert_array_equal(diff(x),out1)
        assert_array_equal(diff(x,n=2),out2)
        assert_array_equal(diff(x,axis=0),out3)
        assert_array_equal(diff(x,n=2,axis=0),out4)

class TestAngle(NumpyTestCase):
    def check_basic(self):
        x = [1+3j,sqrt(2)/2.0+1j*sqrt(2)/2,1,1j,-1,-1j,1-3j,-1+3j]
        y = angle(x)
        yo = [arctan(3.0/1.0),arctan(1.0),0,pi/2,pi,-pi/2.0,
              -arctan(3.0/1.0),pi-arctan(3.0/1.0)]
        z = angle(x,deg=1)
        zo = array(yo)*180/pi
        assert_array_almost_equal(y,yo,11)
        assert_array_almost_equal(z,zo,11)

class TestTrimZeros(NumpyTestCase):
    """ only testing for integer splits.
    """
    def check_basic(self):
        a= array([0,0,1,2,3,4,0])
        res = trim_zeros(a)
        assert_array_equal(res,array([1,2,3,4]))
    def check_leading_skip(self):
        a= array([0,0,1,0,2,3,4,0])
        res = trim_zeros(a)
        assert_array_equal(res,array([1,0,2,3,4]))
    def check_trailing_skip(self):
        a= array([0,0,1,0,2,3,0,4,0])
        res = trim_zeros(a)
        assert_array_equal(res,array([1,0,2,3,0,4]))


class TestExtins(NumpyTestCase):
    def check_basic(self):
        a = array([1,3,2,1,2,3,3])
        b = extract(a>1,a)
        assert_array_equal(b,[3,2,2,3,3])
    def check_place(self):
        a = array([1,4,3,2,5,8,7])
        place(a,[0,1,0,1,0,1,0],[2,4,6])
        assert_array_equal(a,[1,2,3,4,5,6,7])
    def check_both(self):
        a = rand(10)
        mask = a > 0.5
        ac = a.copy()
        c = extract(mask, a)
        place(a,mask,0)
        place(a,mask,c)
        assert_array_equal(a,ac)

class TestVectorize(NumpyTestCase):
    def check_simple(self):
        def addsubtract(a,b):
            if a > b:
                return a - b
            else:
                return a + b
        f = vectorize(addsubtract)
        r = f([0,3,6,9],[1,3,5,7])
        assert_array_equal(r,[1,6,1,2])
    def check_scalar(self):
        def addsubtract(a,b):
            if a > b:
                return a - b
            else:
                return a + b
        f = vectorize(addsubtract)
        r = f([0,3,6,9],5)
        assert_array_equal(r,[5,8,1,4])
    def check_large(self):
        x = linspace(-3,2,10000)
        f = vectorize(lambda x: x)
        y = f(x)
        assert_array_equal(y, x)

class TestDigitize(NumpyTestCase):
    def check_forward(self):
        x = arange(-6,5)
        bins = arange(-5,5)
        assert_array_equal(digitize(x,bins),arange(11))

    def check_reverse(self):
        x = arange(5,-6,-1)
        bins = arange(5,-5,-1)
        assert_array_equal(digitize(x,bins),arange(11))

    def check_random(self):
        x = rand(10)
        bin = linspace(x.min(), x.max(), 10)
        assert all(digitize(x,bin) != 0)

class TestUnwrap(NumpyTestCase):
    def check_simple(self):
                #check that unwrap removes jumps greather that 2*pi
        assert_array_equal(unwrap([1,1+2*pi]),[1,1])
        #check that unwrap maintans continuity
        assert(all(diff(unwrap(rand(10)*100))<pi))


class TestFilterwindows(NumpyTestCase):
    def check_hanning(self):
        #check symmetry
        w=hanning(10)
        assert_array_almost_equal(w,flipud(w),7)
        #check known value
        assert_almost_equal(sum(w,axis=0),4.500,4)

    def check_hamming(self):
        #check symmetry
        w=hamming(10)
        assert_array_almost_equal(w,flipud(w),7)
        #check known value
        assert_almost_equal(sum(w,axis=0),4.9400,4)

    def check_bartlett(self):
        #check symmetry
        w=bartlett(10)
        assert_array_almost_equal(w,flipud(w),7)
        #check known value
        assert_almost_equal(sum(w,axis=0),4.4444,4)

    def check_blackman(self):
        #check symmetry
        w=blackman(10)
        assert_array_almost_equal(w,flipud(w),7)
        #check known value
        assert_almost_equal(sum(w,axis=0),3.7800,4)


class TestTrapz(NumpyTestCase):
    def check_simple(self):
        r=trapz(exp(-1.0/2*(arange(-10,10,.1))**2)/sqrt(2*pi),dx=0.1)
        #check integral of normal equals 1
        assert_almost_equal(sum(r,axis=0),1,7)

class TestSinc(NumpyTestCase):
    def check_simple(self):
        assert(sinc(0)==1)
        w=sinc(linspace(-1,1,100))
        #check symmetry
        assert_array_almost_equal(w,flipud(w),7)

class TestHistogram(NumpyTestCase):
    import warnings
    warnings.simplefilter('ignore', FutureWarning)
    def check_simple(self):
        n=100
        v=rand(n)
        (a,b)=histogram(v)
        #check if the sum of the bins equals the number of samples
        assert_equal(sum(a,axis=0), n)
        #check that the bin counts are evenly spaced when the data is from a
        # linear function
        (a,b)=histogram(linspace(0,10,100))
        assert_array_equal(a, 10)

    def check_simple_new(self):
        n=100
        v=rand(n)
        (a,b)=histogram(v, new=True)
        #check if the sum of the bins equals the number of samples
        assert_equal(sum(a,axis=0), n)
        #check that the bin counts are evenly spaced when the data is from a
        # linear function
        (a,b)=histogram(linspace(0,10,100), new=True)
        assert_array_equal(a, 10)

    def check_normed_new(self):
        # Check that the integral of the density equals 1.
        n = 100
        v = rand(n)
        a,b = histogram(v, normed=True, new=True)
        area = sum(a*diff(b))
        assert_almost_equal(area, 1)

        # Check with non constant bin width
        v = rand(n)*10
        bins = [0,1,5, 9, 10]
        a,b = histogram(v, bins, normed=True, new=True)
        area = sum(a*diff(b))
        assert_almost_equal(area, 1)


    def check_outliers_new(self):
        # Check that outliers are not tallied
        a = arange(10)+.5

        # Lower outliers
        h,b = histogram(a, range=[0,9], new=True)
        assert_equal(h.sum(),9)

        # Upper outliers
        h,b = histogram(a, range=[1,10], new=True)
        assert_equal(h.sum(),9)

        # Normalization
        h,b = histogram(a, range=[1,9], normed=True, new=True)
        assert_equal((h*diff(b)).sum(),1)

        # Weights
        w = arange(10)+.5
        h,b = histogram(a, range=[1,9], weights=w, normed=True, new=True)
        assert_equal((h*diff(b)).sum(),1)

        h,b = histogram(a, bins=8, range=[1,9], weights=w, new=True)
        assert_equal(h, w[1:-1])


    def check_type_new(self):
        # Check the type of the returned histogram
        a = arange(10)+.5
        h,b = histogram(a, new=True)
        assert(issubdtype(h.dtype, int))

        h,b = histogram(a, normed=True, new=True)
        assert(issubdtype(h.dtype, float))

        h,b = histogram(a, weights=ones(10, int), new=True)
        assert(issubdtype(h.dtype, int))

        h,b = histogram(a, weights=ones(10, float), new=True)
        assert(issubdtype(h.dtype, float))


    def check_weights_new(self):
        v = rand(100)
        w = ones(100)*5
        a,b = histogram(v,new=True)
        na,nb = histogram(v, normed=True, new=True)
        wa,wb = histogram(v, weights=w, new=True)
        nwa,nwb = histogram(v, weights=w, normed=True, new=True)
        assert_array_almost_equal(a*5, wa)
        assert_array_almost_equal(na, nwa)

        # Check weights are properly applied.
        v = linspace(0,10,10)
        w = concatenate((zeros(5), ones(5)))
        wa,wb = histogram(v, bins=arange(11),weights=w, new=True)
        assert_array_almost_equal(wa, w)

        # Check with integer weights
        wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], new=True)
        assert_array_equal(wa, [4,5,0,1])
        wa, wb = histogram([1,2,2,4], bins=4, weights=[4,3,2,1], normed=True, new=True)
        assert_array_equal(wa, array([4,5,0,1])/10./3.*4)

class TestHistogramdd(NumpyTestCase):
    def check_simple(self):
        x = array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], \
        [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
        H, edges = histogramdd(x, (2,3,3), range = [[-1,1], [0,3], [0,3]])
        answer = asarray([[[0,1,0], [0,0,1], [1,0,0]], [[0,1,0], [0,0,1],
            [0,0,1]]])
        assert_array_equal(H,answer)
        # Check normalization
        ed = [[-2,0,2], [0,1,2,3], [0,1,2,3]]
        H, edges = histogramdd(x, bins = ed, normed = True)
        assert(all(H == answer/12.))
        # Check that H has the correct shape.
        H, edges = histogramdd(x, (2,3,4), range = [[-1,1], [0,3], [0,4]],
            normed=True)
        answer = asarray([[[0,1,0,0], [0,0,1,0], [1,0,0,0]], [[0,1,0,0],
            [0,0,1,0], [0,0,1,0]]])
        assert_array_almost_equal(H, answer/6., 4)
        # Check that a sequence of arrays is accepted and H has the correct
        # shape.
        z = [squeeze(y) for y in split(x,3,axis=1)]
        H, edges = histogramdd(z, bins=(4,3,2),range=[[-2,2], [0,3], [0,2]])
        answer = asarray([[[0,0],[0,0],[0,0]],
                          [[0,1], [0,0], [1,0]],
                          [[0,1], [0,0],[0,0]],
                          [[0,0],[0,0],[0,0]]])
        assert_array_equal(H, answer)

        Z = zeros((5,5,5))
        Z[range(5), range(5), range(5)] = 1.
        H,edges = histogramdd([arange(5), arange(5), arange(5)], 5)
        assert_array_equal(H, Z)

    def check_shape_3d(self):
        # All possible permutations for bins of different lengths in 3D.
        bins = ((5, 4, 6), (6, 4, 5), (5, 6, 4), (4, 6, 5), (6, 5, 4),
            (4, 5, 6))
        r = rand(10,3)
        for b in bins:
            H, edges = histogramdd(r, b)
            assert(H.shape == b)

    def check_shape_4d(self):
        # All possible permutations for bins of different lengths in 4D.
        bins = ((7, 4, 5, 6), (4, 5, 7, 6), (5, 6, 4, 7), (7, 6, 5, 4),
            (5, 7, 6, 4), (4, 6, 7, 5), (6, 5, 7, 4), (7, 5, 4, 6),
            (7, 4, 6, 5), (6, 4, 7, 5), (6, 7, 5, 4), (4, 6, 5, 7),
            (4, 7, 5, 6), (5, 4, 6, 7), (5, 7, 4, 6), (6, 7, 4, 5),
            (6, 5, 4, 7), (4, 7, 6, 5), (4, 5, 6, 7), (7, 6, 4, 5),
            (5, 4, 7, 6), (5, 6, 7, 4), (6, 4, 5, 7), (7, 5, 6, 4))

        r = rand(10,4)
        for b in bins:
            H, edges = histogramdd(r, b)
            assert(H.shape == b)

    def check_weights(self):
        v = rand(100,2)
        hist, edges = histogramdd(v)
        n_hist, edges = histogramdd(v, normed=True)
        w_hist, edges = histogramdd(v, weights=ones(100))
        assert_array_equal(w_hist, hist)
        w_hist, edges = histogramdd(v, weights=ones(100)*2, normed=True)
        assert_array_equal(w_hist, n_hist)
        w_hist, edges = histogramdd(v, weights=ones(100, int)*2)
        assert_array_equal(w_hist, 2*hist)

    def check_identical_samples(self):
        x = zeros((10,2),int)
        hist, edges = histogramdd(x, bins=2)
        assert_array_equal(edges[0],array([-0.5,  0. ,  0.5]))

class TestUnique(NumpyTestCase):
    def check_simple(self):
        x = array([4,3,2,1,1,2,3,4, 0])
        assert(all(unique(x) == [0,1,2,3,4]))
        assert(unique(array([1,1,1,1,1])) == array([1]))
        x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham']
        assert(all(unique(x) ==  ['bar', 'foo', 'ham', 'widget']))
        x = array([5+6j, 1+1j, 1+10j, 10, 5+6j])
        assert(all(unique(x) == [1+1j, 1+10j, 5+6j, 10]))

def compare_results(res,desired):
    for i in range(len(desired)):
        assert_array_equal(res[i],desired[i])

if __name__ == "__main__":
    NumpyTest().run()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.