test_linalg.py :  » Business-Application » PDB2PQR » pdb2pqr-1.6 » contrib » numpy-1.1.0 » numpy » linalg » tests » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » PDB2PQR 
PDB2PQR » pdb2pqr 1.6 » contrib » numpy 1.1.0 » numpy » linalg » tests » test_linalg.py
""" Test functions for linalg module
"""

from numpy.testing import *
set_package_path()
from numpy import array,single,double,csingle,cdouble,dot,identity
from numpy import multiply,atleast_2d,inf,asarray,matrix
from numpy import linalg
from linalg import matrix_power
restore_path()

def ifthen(a, b):
    return not a or b

old_assert_almost_equal = assert_almost_equal
def imply(a, b):
    return not a or b

def assert_almost_equal(a, b, **kw):
    if asarray(a).dtype.type in (single, csingle):
        decimal = 6
    else:
        decimal = 12
    old_assert_almost_equal(a, b, decimal=decimal, **kw)

class LinalgTestCase(NumpyTestCase):
    def check_single(self):
        a = array([[1.,2.], [3.,4.]], dtype=single)
        b = array([2., 1.], dtype=single)
        self.do(a, b)

    def check_double(self):
        a = array([[1.,2.], [3.,4.]], dtype=double)
        b = array([2., 1.], dtype=double)
        self.do(a, b)

    def check_csingle(self):
        a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=csingle)
        b = array([2.+1j, 1.+2j], dtype=csingle)
        self.do(a, b)

    def check_cdouble(self):
        a = array([[1.+2j,2+3j], [3+4j,4+5j]], dtype=cdouble)
        b = array([2.+1j, 1.+2j], dtype=cdouble)
        self.do(a, b)

    def check_empty(self):
        a = atleast_2d(array([], dtype = double))
        b = atleast_2d(array([], dtype = double))
        try:
            self.do(a, b)
            raise AssertionError("%s should fail with empty matrices", self.__name__[5:])
        except linalg.LinAlgError, e:
            pass

    def check_nonarray(self):
        a = [[1,2], [3,4]]
        b = [2, 1]
        self.do(a,b)

    def check_matrix_b_only(self):
        """Check that matrix type is preserved."""
        a = array([[1.,2.], [3.,4.]])
        b = matrix([2., 1.]).T
        self.do(a, b)

    def check_matrix_a_and_b(self):
        """Check that matrix type is preserved."""
        a = matrix([[1.,2.], [3.,4.]])
        b = matrix([2., 1.]).T
        self.do(a, b)


class TestSolve(LinalgTestCase):
    def do(self, a, b):
        x = linalg.solve(a, b)
        assert_almost_equal(b, dot(a, x))
        assert imply(isinstance(b, matrix), isinstance(x, matrix))

class TestInv(LinalgTestCase):
    def do(self, a, b):
        a_inv = linalg.inv(a)
        assert_almost_equal(dot(a, a_inv), identity(asarray(a).shape[0]))
        assert imply(isinstance(a, matrix), isinstance(a_inv, matrix))

class TestEigvals(LinalgTestCase):
    def do(self, a, b):
        ev = linalg.eigvals(a)
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(ev, evalues)

class TestEig(LinalgTestCase):
    def do(self, a, b):
        evalues, evectors = linalg.eig(a)
        assert_almost_equal(dot(a, evectors), multiply(evectors, evalues))
        assert imply(isinstance(a, matrix), isinstance(evectors, matrix))

class TestSVD(LinalgTestCase):
    def do(self, a, b):
        u, s, vt = linalg.svd(a, 0)
        assert_almost_equal(a, dot(multiply(u, s), vt))
        assert imply(isinstance(a, matrix), isinstance(u, matrix))
        assert imply(isinstance(a, matrix), isinstance(vt, matrix))

class TestCondSVD(LinalgTestCase):
    def do(self, a, b):
        c = asarray(a) # a might be a matrix
        s = linalg.svd(c, compute_uv=False)
        old_assert_almost_equal(s[0]/s[-1], linalg.cond(a), decimal=5)

class TestCond2(LinalgTestCase):
    def do(self, a, b):
        c = asarray(a) # a might be a matrix
        s = linalg.svd(c, compute_uv=False)
        old_assert_almost_equal(s[0]/s[-1], linalg.cond(a,2), decimal=5)

class TestCondInf(NumpyTestCase):
    def test(self):
        A = array([[1.,0,0],[0,-2.,0],[0,0,3.]])
        assert_almost_equal(linalg.cond(A,inf),3.)

class TestPinv(LinalgTestCase):
    def do(self, a, b):
        a_ginv = linalg.pinv(a)
        assert_almost_equal(dot(a, a_ginv), identity(asarray(a).shape[0]))
        assert imply(isinstance(a, matrix), isinstance(a_ginv, matrix))

class TestDet(LinalgTestCase):
    def do(self, a, b):
        d = linalg.det(a)
        if asarray(a).dtype.type in (single, double):
            ad = asarray(a).astype(double)
        else:
            ad = asarray(a).astype(cdouble)
        ev = linalg.eigvals(ad)
        assert_almost_equal(d, multiply.reduce(ev))

class TestLstsq(LinalgTestCase):
    def do(self, a, b):
        u, s, vt = linalg.svd(a, 0)
        x, residuals, rank, sv = linalg.lstsq(a, b)
        assert_almost_equal(b, dot(a, x))
        assert_equal(rank, asarray(a).shape[0])
        assert_almost_equal(sv, sv.__array_wrap__(s))
        assert imply(isinstance(b, matrix), isinstance(x, matrix))
        assert imply(isinstance(b, matrix), isinstance(residuals, matrix))

class TestMatrixPower(ParametricTestCase):
    R90 = array([[0,1],[-1,0]])
    Arb22 = array([[4,-7],[-2,10]])
    noninv = array([[1,0],[0,0]])
    arbfloat = array([[0.1,3.2],[1.2,0.7]])

    large = identity(10)
    t = large[1,:].copy()
    large[1,:] = large[0,:]
    large[0,:] = t

    def test_large_power(self):
        assert_equal(matrix_power(self.R90,2L**100+2**10+2**5+1),self.R90)
    def test_large_power_trailing_zero(self):
        assert_equal(matrix_power(self.R90,2L**100+2**10+2**5),identity(2))

    def testip_zero(self):
        def tz(M):
            mz = matrix_power(M,0)
            assert_equal(mz, identity(M.shape[0]))
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_one(self):
        def tz(M):
            mz = matrix_power(M,1)
            assert_equal(mz, M)
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_two(self):
        def tz(M):
            mz = matrix_power(M,2)
            assert_equal(mz, dot(M,M))
            assert_equal(mz.dtype, M.dtype)
        for M in [self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def testip_invert(self):
        def tz(M):
            mz = matrix_power(M,-1)
            assert_almost_equal(identity(M.shape[0]), dot(mz,M))
        for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
            yield tz, M

    def test_invert_noninvertible(self):
        import numpy.linalg
        self.assertRaises(numpy.linalg.linalg.LinAlgError,
                lambda: matrix_power(self.noninv,-1))

class TestBoolPower(NumpyTestCase):
    def check_square(self):
        A = array([[True,False],[True,True]])
        assert_equal(matrix_power(A,2),A)

if __name__ == '__main__':
    NumpyTest().run()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.