random_array.py :  » Business-Application » PDB2PQR » pdb2pqr-1.6 » contrib » numpy-1.1.0 » numpy » oldnumeric » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » PDB2PQR 
PDB2PQR » pdb2pqr 1.6 » contrib » numpy 1.1.0 » numpy » oldnumeric » random_array.py
# Backward compatible module for RandomArray

__all__ = ['ArgumentError','F','beta','binomial','chi_square', 'exponential',
           'gamma', 'get_seed', 'mean_var_test', 'multinomial',
           'multivariate_normal', 'negative_binomial', 'noncentral_F',
           'noncentral_chi_square', 'normal', 'permutation', 'poisson',
           'randint', 'random', 'random_integers', 'seed', 'standard_normal',
           'uniform']

ArgumentError = ValueError

import numpy.random.mtrand as mt
import numpy as Numeric

def seed(x=0, y=0):
    if (x == 0 or y == 0):
        mt.seed()
    else:
        mt.seed((x,y))

def get_seed():
    raise NotImplementedError, \
          "If you want to save the state of the random number generator.\n"\
          "Then you should use obj = numpy.random.get_state() followed by.\n"\
          "numpy.random.set_state(obj)."

def random(shape=[]):
    "random(n) or random([n, m, ...]) returns array of random numbers"
    if shape == []:
        shape = None
    return mt.random_sample(shape)

def uniform(minimum, maximum, shape=[]):
    """uniform(minimum, maximum, shape=[]) returns array of given shape of random reals
    in given range"""
    if shape == []:
        shape = None
    return mt.uniform(minimum, maximum, shape)

def randint(minimum, maximum=None, shape=[]):
    """randint(min, max, shape=[]) = random integers >=min, < max
    If max not given, random integers >= 0, <min"""
    if not isinstance(minimum, int):
        raise ArgumentError, "randint requires first argument integer"
    if maximum is None:
        maximum = minimum
        minimum = 0
    if not isinstance(maximum, int):
        raise ArgumentError, "randint requires second argument integer"
    a = ((maximum-minimum)* random(shape))
    if isinstance(a, Numeric.ndarray):
        return minimum + a.astype(Numeric.int)
    else:
        return minimum + int(a)

def random_integers(maximum, minimum=1, shape=[]):
    """random_integers(max, min=1, shape=[]) = random integers in range min-max inclusive"""
    return randint(minimum, maximum+1, shape)

def permutation(n):
    "permutation(n) = a permutation of indices range(n)"
    return mt.permutation(n)

def standard_normal(shape=[]):
    """standard_normal(n) or standard_normal([n, m, ...]) returns array of
           random numbers normally distributed with mean 0 and standard
           deviation 1"""
    if shape == []:
        shape = None
    return mt.standard_normal(shape)

def normal(mean, std, shape=[]):
    """normal(mean, std, n) or normal(mean, std, [n, m, ...]) returns
    array of random numbers randomly distributed with specified mean and
    standard deviation"""
    if shape == []:
        shape = None
    return mt.normal(mean, std, shape)

def multivariate_normal(mean, cov, shape=[]):
    """multivariate_normal(mean, cov) or multivariate_normal(mean, cov, [m, n, ...])
    returns an array containing multivariate normally distributed random numbers
    with specified mean and covariance.

    mean must be a 1 dimensional array. cov must be a square two dimensional
    array with the same number of rows and columns as mean has elements.

    The first form returns a single 1-D array containing a multivariate
    normal.

    The second form returns an array of shape (m, n, ..., cov.shape[0]).
    In this case, output[i,j,...,:] is a 1-D array containing a multivariate
    normal."""
    if shape == []:
        shape = None
    return mt.multivariate_normal(mean, cov, shape)

def exponential(mean, shape=[]):
    """exponential(mean, n) or exponential(mean, [n, m, ...]) returns array
      of random numbers exponentially distributed with specified mean"""
    if shape == []:
        shape = None
    return mt.exponential(mean, shape)

def beta(a, b, shape=[]):
    """beta(a, b) or beta(a, b, [n, m, ...]) returns array of beta distributed random numbers."""
    if shape == []:
        shape = None
    return mt.beta(a, b, shape)

def gamma(a, r, shape=[]):
    """gamma(a, r) or gamma(a, r, [n, m, ...]) returns array of gamma distributed random numbers."""
    if shape == []:
        shape = None
    return mt.gamma(a, r, shape)

def F(dfn, dfd, shape=[]):
    """F(dfn, dfd) or F(dfn, dfd, [n, m, ...]) returns array of F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator."""
    if shape == []:
        shape = None
    return mt.f(dfn, dfd, shape)

def noncentral_F(dfn, dfd, nconc, shape=[]):
    """noncentral_F(dfn, dfd, nonc) or noncentral_F(dfn, dfd, nonc, [n, m, ...]) returns array of noncentral F distributed random numbers with dfn degrees of freedom in the numerator and dfd degrees of freedom in the denominator, and noncentrality parameter nconc."""
    if shape == []:
        shape = None
    return mt.noncentral_f(dfn, dfd, nconc, shape)

def chi_square(df, shape=[]):
    """chi_square(df) or chi_square(df, [n, m, ...]) returns array of chi squared distributed random numbers with df degrees of freedom."""
    if shape == []:
        shape = None
    return mt.chisquare(df, shape)

def noncentral_chi_square(df, nconc, shape=[]):
    """noncentral_chi_square(df, nconc) or chi_square(df, nconc, [n, m, ...]) returns array of noncentral chi squared distributed random numbers with df degrees of freedom and noncentrality parameter."""
    if shape == []:
        shape = None
    return mt.noncentral_chisquare(df, nconc, shape)

def binomial(trials, p, shape=[]):
    """binomial(trials, p) or binomial(trials, p, [n, m, ...]) returns array of binomially distributed random integers.

           trials is the number of trials in the binomial distribution.
           p is the probability of an event in each trial of the binomial distribution."""
    if shape == []:
        shape = None
    return mt.binomial(trials, p, shape)

def negative_binomial(trials, p, shape=[]):
    """negative_binomial(trials, p) or negative_binomial(trials, p, [n, m, ...]) returns
           array of negative binomially distributed random integers.

           trials is the number of trials in the negative binomial distribution.
           p is the probability of an event in each trial of the negative binomial distribution."""
    if shape == []:
        shape = None
    return mt.negative_binomial(trials, p, shape)

def multinomial(trials, probs, shape=[]):
    """multinomial(trials, probs) or multinomial(trials, probs, [n, m, ...]) returns
           array of multinomial distributed integer vectors.

           trials is the number of trials in each multinomial distribution.
           probs is a one dimensional array. There are len(prob)+1 events.
           prob[i] is the probability of the i-th event, 0<=i<len(prob).
           The probability of event len(prob) is 1.-Numeric.sum(prob).

       The first form returns a single 1-D array containing one multinomially
           distributed vector.

           The second form returns an array of shape (m, n, ..., len(probs)).
           In this case, output[i,j,...,:] is a 1-D array containing a multinomially
           distributed integer 1-D array."""
    if shape == []:
        shape = None
    return mt.multinomial(trials, probs, shape)

def poisson(mean, shape=[]):
    """poisson(mean) or poisson(mean, [n, m, ...]) returns array of poisson
           distributed random integers with specified mean."""
    if shape == []:
        shape = None
    return mt.poisson(mean, shape)


def mean_var_test(x, type, mean, var, skew=[]):
    n = len(x) * 1.0
    x_mean = Numeric.sum(x,axis=0)/n
    x_minus_mean = x - x_mean
    x_var = Numeric.sum(x_minus_mean*x_minus_mean,axis=0)/(n-1.0)
    print "\nAverage of ", len(x), type
    print "(should be about ", mean, "):", x_mean
    print "Variance of those random numbers (should be about ", var, "):", x_var
    if skew != []:
        x_skew = (Numeric.sum(x_minus_mean*x_minus_mean*x_minus_mean,axis=0)/9998.)/x_var**(3./2.)
        print "Skewness of those random numbers (should be about ", skew, "):", x_skew

def test():
    obj = mt.get_state()
    mt.set_state(obj)
    obj2 = mt.get_state()
    if (obj2[1] - obj[1]).any():
        raise SystemExit, "Failed seed test."
    print "First random number is", random()
    print "Average of 10000 random numbers is", Numeric.sum(random(10000),axis=0)/10000.
    x = random([10,1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit, "random returned wrong shape"
    x.shape = (10000,)
    print "Average of 100 by 100 random numbers is", Numeric.sum(x,axis=0)/10000.
    y = uniform(0.5,0.6, (1000,10))
    if len(y.shape) !=2 or y.shape[0] != 1000 or y.shape[1] != 10:
        raise SystemExit, "uniform returned wrong shape"
    y.shape = (10000,)
    if Numeric.minimum.reduce(y) <= 0.5 or Numeric.maximum.reduce(y) >= 0.6:
        raise SystemExit, "uniform returned out of desired range"
    print "randint(1, 10, shape=[50])"
    print randint(1, 10, shape=[50])
    print "permutation(10)", permutation(10)
    print "randint(3,9)", randint(3,9)
    print "random_integers(10, shape=[20])"
    print random_integers(10, shape=[20])
    s = 3.0
    x = normal(2.0, s, [10, 1000])
    if len(x.shape) != 2 or x.shape[0] != 10 or x.shape[1] != 1000:
        raise SystemExit, "standard_normal returned wrong shape"
    x.shape = (10000,)
    mean_var_test(x, "normally distributed numbers with mean 2 and variance %f"%(s**2,), 2, s**2, 0)
    x = exponential(3, 10000)
    mean_var_test(x, "random numbers exponentially distributed with mean %f"%(s,), s, s**2, 2)
    x = multivariate_normal(Numeric.array([10,20]), Numeric.array(([1,2],[2,4])))
    print "\nA multivariate normal", x
    if x.shape != (2,): raise SystemExit, "multivariate_normal returned wrong shape"
    x = multivariate_normal(Numeric.array([10,20]), Numeric.array([[1,2],[2,4]]), [4,3])
    print "A 4x3x2 array containing multivariate normals"
    print x
    if x.shape != (4,3,2): raise SystemExit, "multivariate_normal returned wrong shape"
    x = multivariate_normal(Numeric.array([-100,0,100]), Numeric.array([[3,2,1],[2,2,1],[1,1,1]]), 10000)
    x_mean = Numeric.sum(x,axis=0)/10000.
    print "Average of 10000 multivariate normals with mean [-100,0,100]"
    print x_mean
    x_minus_mean = x - x_mean
    print "Estimated covariance of 10000 multivariate normals with covariance [[3,2,1],[2,2,1],[1,1,1]]"
    print Numeric.dot(Numeric.transpose(x_minus_mean),x_minus_mean)/9999.
    x = beta(5.0, 10.0, 10000)
    mean_var_test(x, "beta(5.,10.) random numbers", 0.333, 0.014)
    x = gamma(.01, 2., 10000)
    mean_var_test(x, "gamma(.01,2.) random numbers", 2*100, 2*100*100)
    x = chi_square(11., 10000)
    mean_var_test(x, "chi squared random numbers with 11 degrees of freedom", 11, 22, 2*Numeric.sqrt(2./11.))
    x = F(5., 10., 10000)
    mean_var_test(x, "F random numbers with 5 and 10 degrees of freedom", 1.25, 1.35)
    x = poisson(50., 10000)
    mean_var_test(x, "poisson random numbers with mean 50", 50, 50, 0.14)
    print "\nEach element is the result of 16 binomial trials with probability 0.5:"
    print binomial(16, 0.5, 16)
    print "\nEach element is the result of 16 negative binomial trials with probability 0.5:"
    print negative_binomial(16, 0.5, [16,])
    print "\nEach row is the result of 16 multinomial trials with probabilities [0.1, 0.5, 0.1 0.3]:"
    x = multinomial(16, [0.1, 0.5, 0.1], 8)
    print x
    print "Mean = ", Numeric.sum(x,axis=0)/8.

if __name__ == '__main__':
    test()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.