utilities.py :  » Business-Application » PDB2PQR » pdb2pqr-1.6 » src » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » PDB2PQR 
PDB2PQR » pdb2pqr 1.6 » src » utilities.py
"""
    Utilities for PDB2PQR Suite

    This module provides various utilities for the PDB2PQR suite to be
    imported into other Python scripts.
    
    ----------------------------
   
    PDB2PQR -- An automated pipeline for the setup, execution, and analysis of
    Poisson-Boltzmann electrostatics calculations

  Copyright (c) 2002-2010, Jens Erik Nielsen, University College Dublin; 
  Nathan A. Baker, Washington University in St. Louis; Paul Czodrowski & 
  Gerhard Klebe, University of Marburg

  All rights reserved.

  Redistribution and use in source and binary forms, with or without modification, 
  are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright notice, 
      this list of conditions and the following disclaimer.
    * Redistributions in binary form must reproduce the above copyright notice, 
      this list of conditions and the following disclaimer in the documentation 
      and/or other materials provided with the distribution.
    * Neither the names of University College Dublin, Washington University in 
      St. Louis, or University of Marburg nor the names of its contributors may 
      be used to endorse or promote products derived from this software without 
      specific prior written permission.

  THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
  ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
  WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 
  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, 
  INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 
  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 
  DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF 
  LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE 
  OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED 
  OF THE POSSIBILITY OF SUCH DAMAGE.

    ----------------------------
"""

__date__ = "6 November 2007"
__author__ = "Todd Dolinsky, Yong Huang"
SMALL = 1.0e-7
DIHEDRAL = 57.2958

import string
import math
import os
import sys

def sortDictByValue(dict):
    """
        Sort a dictionary by its values

        Parameters
            dict:  The dictionary to sort (dict)
        Returns
            items: The dictionary sorted by value (list)
    """
    items = [(v, k) for k, v in dict.items()]
    items.sort()
    items.reverse()             
    items = [ k for v, k in items]
    return items

def shortestPath(graph, start, end, path=[]):
    """
        Uses recursion to find the shortest path from one node to
        another in an unweighted graph.  Adapted from
        http://www.python.org/doc/essays/graphs.html .

        Parameters:
            graph: A mapping of the graph to analyze, of the form
                   {0: [1,2], 1:[3,4], ...} . Each key has a list
                   of edges.
            start: The ID of the key to start the analysis from
            end:   The ID of the key to end the analysis
            path:  Optional argument used during the recursive step
                   to keep the current path up to that point

        Returns:
            (variable): Returns a list of the shortest path (list)
                        Returns None if start and end are not
                        connected
    """

    path = path + [start]
    if start == end:
        return path
    if not graph.has_key(start):
        return None
    shortest = None
    for node in graph[start]:
        if node not in path:
            newpath = shortestPath(graph, node, end, path)
            if newpath:
                if not shortest or len(newpath) < len(shortest):
                    shortest = newpath
    return shortest

def analyzeConnectivity(map, key):
    """
        Analyze the connectivity of a given map using the key value.

        Parameters
            map:  The map to analyze (dict)
            key:  The key value (variable)
        Returns
            list: A list of connected values to the key (list)
    """
    list = []
    keys = [key]
    while len(keys) > 0:
        key = keys[0]
        if key not in list:
            list.append(key)
            # The following 4 lines are modified by Greg Cipriano as a bug fix
            if key in map:
                for value in map[key]:
                    if value not in list:
                        keys.append(value)
    
        keys.pop(keys.index(key))
        
    return list

def getAngle(coords1, coords2, coords3):
        """
            Get the angle between three coordinates

            Parameters
                coords1:  The first coordinate set (atom)
                coords2:  The second (vertex) coordinate set (atom)
                coords3:  The third coordinate set (atom)
            Returns
                angle:  The angle between the atoms (float)
        """
        angle = 0.0
        c1 = subtract(coords3, coords2)
        c2 = subtract(coords1, coords2)
        norm1 = normalize(c1)
        norm2 = normalize(c2)
        dotted = dot(norm1, norm2)
        if dotted > 1.0: # If normalized, this is due to rounding error
            dotted = 1.0
        rad = abs(math.acos(dotted))
        angle = rad*180.0/math.pi
        if angle > 180.0:
            angle = 360.0 - angle
        return angle

def getFFfile(name):
    """
        Grab the forcefield file.  May or may not residue in the dat/
        directory.
    """
    path = ""
    dirs = sys.path + ["dat"]
    if name in ["amber", "charmm", "parse", "tyl06", "peoepb", "swanson"]: name = name.upper()

    names = ["dat/%s.DAT" % name]
    
    names.append("%s.DAT" % name)
    names.append("%s.dat" % name)
    names.append("dat/%s" % name)
    names.append(name)

    for guess in names:
        if os.path.isfile(guess):
            return guess

        for p in dirs:
            testpath = "%s/%s" % (p, guess)
            if os.path.isfile(testpath):
                return testpath

    # If we get here return empty string
    
    return ""

def getNamesFile(name):
    """
        Grab the *.names file that contains the XML mapping.

        Parameters
            name:  The name of the forcefield (string)
        Returns
            path:  The path to the file (string)
    """
    path = ""
    dirs = sys.path + ["dat"]
    if name in ["amber", "charmm", "parse", "tyl06", "peoepb", "swanson"]: name = name.upper()

    names = ["dat/%s.names" % name]
    names.append("%s.names" % name)
  
    for guess in names:
        if os.path.isfile(guess):
            return guess

        for p in dirs:
            testpath = "%s/%s" % (p, guess)
            if os.path.isfile(testpath):
                return testpath

    # If we get here return empty string
    
    return ""
    
def getDatFile(name):
    """
        Grab a data file. If the file cannot be found in the
        given directory, try the current system path.

        Parameters
            name:  The name of the file to get (string)
        Returns
            path:  The path to the file (string)
    """
    path = ""

    if os.path.isfile(name):
        path = name

    for p in sys.path:
        testpath = "%s/%s" % (p, name)
        if os.path.isfile(testpath):
            path = testpath

    return path

def getPDBFile(path):
    """
        Obtain a PDB file.  First check the path given on the command
        line - if that file is not available, obtain the file from the
        PDB webserver at http://www.rcsb.org/pdb/ .

        Parameters
            path:  Name of PDB file to obtain (string)

        Returns
            file:  File object containing PDB file (file object)
    """

    import os, urllib

    file = None
    if not os.path.isfile(path):
        URLpath = "http://www.rcsb.org/pdb/cgi/export.cgi/" + path + \
                  ".pdb?format=PDB&pdbId=" + path + "&compression=None"
        file = urllib.urlopen(URLpath)
    else:
        file = open(path, 'rU')
    return file
        
def distance(coords1, coords2):
    """
        Calculate the distance between two coordinates, as denoted by

            dist = sqrt((x2- x1)^2 + (y2 - y1)^2 + (z2 - z1)^2))

        Parameters
            coords1: Coordinates of form [x,y,z]
            coords2: Coordinates of form [x,y,z]
        Returns
            dist:  Distance between the two coordinates (float)
    """
    dist = 0.0
    list = []

    p = coords2[0] - coords1[0]
    q = coords2[1] - coords1[1]
    r = coords2[2] - coords1[2]
    dist = math.sqrt(p*p + q*q + r*r)

    return dist

def add(coords1, coords2):
    """
        Add one 3-dimensional point to another
        
        Parameters
            coords1: coordinates of form [x,y,z]
            coords2: coordinates of form [x,y,z]
        Returns
            list:  List of coordinates equal to coords2 + coords1 (list)
    """
    x = coords1[0] + coords2[0]
    y = coords1[1] + coords2[1]
    z = coords1[2] + coords2[2]
    return [x,y,z]

def subtract(coords1, coords2):
    """
        Subtract one 3-dimensional point from another

        Parameters
            coords1: coordinates of form [x,y,z]
            coords2: coordinates of form [x,y,z]
        Returns
            list:  List of coordinates equal to coords1 - coords2 (list)
    """
    x = coords1[0] - coords2[0]
    y = coords1[1] - coords2[1]
    z = coords1[2] - coords2[2]
    return [x,y,z]

def cross(coords1, coords2):
    """
        Find the cross product of two 3-dimensional points

        Parameters
            coords1: coordinates of form [x,y,z]
            coords2: coordinates of form [x,y,z]
        Returns
            list:  Cross product coords2 and coords1 (list)
    """
    list = []
    x = coords1[1]*coords2[2] -  coords1[2]*coords2[1]
    y = coords1[2]*coords2[0] -  coords1[0]*coords2[2]
    z = coords1[0]*coords2[1] -  coords1[1]*coords2[0]
    list = [x,y,z]
    return list

def dot(coords1, coords2):
    """
        Find the dot product of two 3-dimensional points

        Parameters
            coords1: coordinates of form [x,y,z]
            coords2: coordinates of form [x,y,z]
        Returns
            value:  Dot product coords2 and coords1 (float)
    """
    value = 0.0
    for i in range(3):
        value += coords1[i]*coords2[i]
    return value

def normalize(coords):
    """
        Normalize a set of coordinates
        
        Parameters
            coords: coordinates of form [x,y,z]
        Returns
            list: normalized coordinates (list)
    """
    list = []
    dist = math.sqrt(pow(coords[0],2) + pow(coords[1],2) + pow(coords[2],2))
    if dist > SMALL:
        a = coords[0]/dist
        b = coords[1]/dist
        c = coords[2]/dist
        list = [a,b,c]
    else:
        list = coords
    return list

def factorial(n):
    """
        Returns the factorial of the given number n
    """
    if n <= 1 : return 1
    return n*factorial(n-1)

def getDihedral(coords1, coords2, coords3, coords4):
    """
        Calculate the angle using the four atoms

        Parameters
            coords1: First of four coordinates of form [x,y,z]
            coords2: Second of four
            coords3: Third of four
            coords4: Fourth of four
        Returns
            value: Size of the angle (float)
    """
    value = 0.0
    
    list43 = subtract(coords4, coords3)
    list32 = subtract(coords3, coords2)
    list12 = subtract(coords1, coords2)

    A = cross(list12, list32)
    Anorm = normalize(A)
    B = cross(list43, list32)
    Bnorm = normalize(B)
    
    scal = dot(Anorm, Bnorm)
    if abs(scal + 1.0) < SMALL:
        value = 180.0
    elif abs(scal - 1.0) < SMALL:
        value = 0.0
    else:
        value = DIHEDRAL * math.acos(scal)

    chiral = dot(cross(Anorm, Bnorm),list32)
    if chiral < 0:
        value = value * -1.0
    return value
    
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.