thanfilet.py :  » Business-Application » ThanCad » thancad-0.0.9 » thanvar » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Business Application » ThanCad 
ThanCad » thancad 0.0.9 » thanvar » thanfilet.py
# -*- coding: iso-8859-7 -*-

##############################################################################
# ThanCad 0.0.9 "DoesSomething": 2dimensional CAD with raster support for engineers.
# 
# Copyright (c) 2001-2009 Thanasis Stamos,  August 23, 2009
# URL:     http://thancad.sourceforge.net
# e-mail:  cyberthanasis@excite.com
# 
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
# 
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details (www.gnu.org/licenses/gpl.html).
# 
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
##############################################################################

"""\
ThanCad 0.0.9 "DoesSomething": 2dimensional CAD with raster support for engineers.

This module computes intersection of 2 lines sgements (extending them if
necessary and joins them with circular arc.
"""


from math import pi,acos
from p_gmath import dpt
from p_gvec import Vector2

def thanFiletCalc(a, b, rr):
      """Extend and join 2 lines with circular arc of radius rr.

      a.cp are the coordinates of the first line and b.cp are the
      coordinates of the second line.
c---------------------------------------------------------------------------
c
c                      o K2                      --->
c                     /|\                     = (K2 C)
c                   /  |  \                         ---->           ---->
c                 /   |   \                t23 = (K2 K3) , t21 = (K2 K1)
c              / o    |    o \                  -->            -->
c             /o.      |      .o\            r = (C )     r = (C )
c           /      .   |   .      \
c         /           .|.           \        rr = radius
c   K3  /              o  C           \
c     o                                 \   ... = radiuses,  = circular arc
c                                         \
c                                           o  K1
c
c     Let t21, t23 unit vectors.
c       = t21+t23      
c        K2   C.
c      r       (K2 K1). 
c               
c     t*          r.
c        r = rr*r = (C ).  :
c
c       + r =  t21   =>    *(1) + r(1) = *t21(1)
c                             *(2) + r(2) = *t21(2)    =>
c     (1) *   -  t21(1) *   = -r(1)         (2x2  )
c     (2) *   -  t21(2) *   = -r(2)
c     
C       + r =  t21   =>    -  t21 = -r  =>  -  +  t21 = r     (  r     t21)
c
c     OK. Now I know K3 and t21 (or t12 - not sure which one) and
c     K2 and t23 (or t32). How do I find K2?
c     K1K2 + K2K3 = K1K3 => -K2K1 + K2K3 = K1K3 => -kapa t21 + lambda t23 = K1K3
c     which is equvalent to analysis of K1K3 to t21 and t23
c     Then: K2 = K1 + K1K2 = K1 + kapa t21
c---------------------------------------------------------------------------
      """
      assert rr >= 0.0, "negative radius?!"
      assert len(a.cp) == 2 and len(b.cp) == 2, "This routine can filet only single line segments"
      K1v  = Vector2(a.cp[0][0], a.cp[0][1])
      K1 = Vector2(a.cp[1][0], a.cp[1][1])
      d1v = abs(K1-K1v)
      K3v  = Vector2(b.cp[0][0], b.cp[0][1])
      K3 = Vector2(b.cp[1][0], b.cp[1][1])
      d3v = abs(K3-K3v)
      t21 = -(K1-K1v).unit()
      t23 = -(K3-K3v).unit()
      th = dpt(acos(t21*t23))
      if abs(th-pi) < 1e-6: return 1, None     # angle almost 180 deg; no intesection
      if abs(th)    < 1e-6: return 1, None     # angle almost 0 deg; no intersection

      kapa, lamda = (K3-K1).anal(-t21, t23)  # This must succeed, angle is nonzero
      K2 = K1 - kapa * t21
      ia = 1
      if kapa < 0.0:
          if abs(kapa) >= d1v:
#              if len(a.cp) > 2: return 1, None # They do not intersect in this side
              K1, K1v = K1, K1v
              t21 = -t21
              ia = 0
      ib = 1
      if lamda < 0.0:
          if abs(lamda) >= d3v:
#              if len(b.cp) > 2: return 1, None  # They do not intersect in this side
              K3, K3v = K3, K3v
              t23 = -t23
              ib = 0
      if rr == 0.0:
          a.cp[ia][:2] = K2.x, K2.y
          b.cp[ib][:2] = K2.x, K2.y
          return 0, None

      d = t21+t23
      r = t21.normal()
      if d*r > 0.0: r = -r
      r = r * rr

      kapa, lamda = r.anal(d, t21)
      kapa = -kapa
      assert kapa  > 0.0, 'filetCalc 1: impossible error'
      assert lamda > 0.0, 'filetCalc 1: impossible error'

      center = K2 + kapa*d
      alpha = center + r

      r = t23.normal()
      if d*r > 0.0: r = -r
      tau = center + rr*r

      T = abs(K2-alpha)
      if T > abs(K2-K1v): return 2, None        # Circular arc is outside the first line
      if T > abs(K2-K3v): return 2, None        # Circular arc is outside the second line
      a.cp[ia][:2] = alpha.x, alpha.y
      b.cp[ib][:2] = tau.x, tau.y

      theta1 = (alpha-center).atan2()
      theta2 = (tau-center).atan2()
      if dpt(theta2-theta1) > pi: theta1, theta2 = theta2, theta1   # We want the convex angle
      cc = list(a.cp[ia])
      cc[0] = center.x
      cc[1] = center.y
      return 0, (cc, rr, theta1, theta2)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.