longshort.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » doc » mpl_examples » misc » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » doc » mpl_examples » misc » longshort.py
"""
Illustrate the rec array utility funcitons by loading prices from a
csv file, computing the daily returns, appending the results to the
record arrays, joining on date
"""
import urllib
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.mlab as mlab

# grab the price data off yahoo
u1 = urllib.urlretrieve('http://ichart.finance.yahoo.com/table.csv?s=AAPL&d=9&e=14&f=2008&g=d&a=8&b=7&c=1984&ignore=.csv')
u2 = urllib.urlretrieve('http://ichart.finance.yahoo.com/table.csv?s=GOOG&d=9&e=14&f=2008&g=d&a=8&b=7&c=1984&ignore=.csv')

# load the CSV files into record arrays
r1 = mlab.csv2rec(file(u1[0]))
r2 = mlab.csv2rec(file(u2[0]))

# compute the daily returns and add these columns to the arrays
gains1 = np.zeros_like(r1.adj_close)
gains2 = np.zeros_like(r2.adj_close)
gains1[1:] = np.diff(r1.adj_close)/r1.adj_close[:-1]
gains2[1:] = np.diff(r2.adj_close)/r2.adj_close[:-1]
r1 = mlab.rec_append_fields(r1, 'gains', gains1)
r2 = mlab.rec_append_fields(r2, 'gains', gains2)

# now join them by date; the default postfixes are 1 and 2.  The
# default jointype is inner so it will do an intersection of dates and
# drop the dates in AAPL which occurred before GOOG started trading in
# 2004.  r1 and r2 are reverse ordered by date since Yahoo returns
# most recent first in the CSV files, but rec_join will sort by key so
# r below will be properly sorted
r = mlab.rec_join('date', r1, r2)


# long appl, short goog
g = r.gains1-r.gains2
tr = (1+g).cumprod()  # the total return

# plot the return
fig = plt.figure()
ax = fig.add_subplot(111)
ax.plot(r.date, tr)
ax.set_title('total return: long APPL, short GOOG')
ax.grid()
fig.autofmt_xdate()
plt.show()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.