from docutils import nodes
from docutils.writers.html4css1 import HTMLTranslator
from sphinx.latexwriter import LaTeXTranslator
# Define LaTeX math node:
class latex_math(nodes.General, nodes.Element):
pass
def math_role(role, rawtext, text, lineno, inliner,
options={}, content=[]):
i = rawtext.find('`')
latex = rawtext[i+1:-1]
try:
mathml_tree = parse_latex_math(latex, inline=True)
except SyntaxError, msg:
msg = inliner.reporter.error(msg, line=lineno)
prb = inliner.problematic(rawtext, rawtext, msg)
return [prb], [msg]
node = latex_math(rawtext)
node['latex'] = latex
node['mathml_tree'] = mathml_tree
return [node], []
try:
from docutils.parsers.rst import Directive
except ImportError:
# Register directive the old way:
from docutils.parsers.rst.directives import _directives
def math_directive(name, arguments, options, content, lineno,
content_offset, block_text, state, state_machine):
latex = ''.join(content)
try:
mathml_tree = parse_latex_math(latex, inline=False)
except SyntaxError, msg:
error = state_machine.reporter.error(
msg, nodes.literal_block(block_text, block_text), line=lineno)
return [error]
node = latex_math(block_text)
node['latex'] = latex
node['mathml_tree'] = mathml_tree
return [node]
math_directive.arguments = None
math_directive.options = {}
math_directive.content = 1
_directives['math'] = math_directive
else:
class math_directive(Directive):
has_content = True
def run(self):
latex = ' '.join(self.content)
try:
mathml_tree = parse_latex_math(latex, inline=False)
except SyntaxError, msg:
error = self.state_machine.reporter.error(
msg, nodes.literal_block(self.block_text, self.block_text),
line=self.lineno)
return [error]
node = latex_math(self.block_text)
node['latex'] = latex
node['mathml_tree'] = mathml_tree
return [node]
from docutils.parsers.rst import directives
directives.register_directive('math', math_directive)
def setup(app):
app.add_node(latex_math)
app.add_role('math', math_role)
# Add visit/depart methods to HTML-Translator:
def visit_latex_math_html(self, node):
mathml = ''.join(node['mathml_tree'].xml())
self.body.append(mathml)
def depart_latex_math_html(self, node):
pass
HTMLTranslator.visit_latex_math = visit_latex_math_html
HTMLTranslator.depart_latex_math = depart_latex_math_html
# Add visit/depart methods to LaTeX-Translator:
def visit_latex_math_latex(self, node):
inline = isinstance(node.parent, nodes.TextElement)
if inline:
self.body.append('$%s$' % node['latex'])
else:
self.body.extend(['\\begin{equation}',
node['latex'],
'\\end{equation}'])
def depart_latex_math_latex(self, node):
pass
LaTeXTranslator.visit_latex_math = visit_latex_math_latex
LaTeXTranslator.depart_latex_math = depart_latex_math_latex
# LaTeX to MathML translation stuff:
class math:
"""Base class for MathML elements."""
nchildren = 1000000
"""Required number of children"""
def __init__(self, children=None, inline=None):
"""math([children]) -> MathML element
children can be one child or a list of children."""
self.children = []
if children is not None:
if type(children) is list:
for child in children:
self.append(child)
else:
# Only one child:
self.append(children)
if inline is not None:
self.inline = inline
def __repr__(self):
if hasattr(self, 'children'):
return self.__class__.__name__ + '(%s)' % \
','.join([repr(child) for child in self.children])
else:
return self.__class__.__name__
def full(self):
"""Room for more children?"""
return len(self.children) >= self.nchildren
def append(self, child):
"""append(child) -> element
Appends child and returns self if self is not full or first
non-full parent."""
assert not self.full()
self.children.append(child)
child.parent = self
node = self
while node.full():
node = node.parent
return node
def delete_child(self):
"""delete_child() -> child
Delete last child and return it."""
child = self.children[-1]
del self.children[-1]
return child
def close(self):
"""close() -> parent
Close element and return first non-full element."""
parent = self.parent
while parent.full():
parent = parent.parent
return parent
def xml(self):
"""xml() -> xml-string"""
return self.xml_start() + self.xml_body() + self.xml_end()
def xml_start(self):
if not hasattr(self, 'inline'):
return ['<%s>' % self.__class__.__name__]
xmlns = 'http://www.w3.org/1998/Math/MathML'
if self.inline:
return ['<math xmlns="%s">' % xmlns]
else:
return ['<math xmlns="%s" mode="display">' % xmlns]
def xml_end(self):
return ['</%s>' % self.__class__.__name__]
def xml_body(self):
xml = []
for child in self.children:
xml.extend(child.xml())
return xml
class mrow(math): pass
class mtable(math): pass
class mtr(mrow): pass
class mtd(mrow): pass
class mx(math):
"""Base class for mo, mi, and mn"""
nchildren = 0
def __init__(self, data):
self.data = data
def xml_body(self):
return [self.data]
class mo(mx):
translation = {'<': '<', '>': '>'}
def xml_body(self):
return [self.translation.get(self.data, self.data)]
class mi(mx): pass
class mn(mx): pass
class msub(math):
nchildren = 2
class msup(math):
nchildren = 2
class msqrt(math):
nchildren = 1
class mroot(math):
nchildren = 2
class mfrac(math):
nchildren = 2
class msubsup(math):
nchildren = 3
def __init__(self, children=None, reversed=False):
self.reversed = reversed
math.__init__(self, children)
def xml(self):
if self.reversed:
## self.children[1:3] = self.children[2:0:-1]
self.children[1:3] = [self.children[2], self.children[1]]
self.reversed = False
return math.xml(self)
class mfenced(math):
translation = {'\\{': '{', '\\langle': u'\u2329',
'\\}': '}', '\\rangle': u'\u232A',
'.': ''}
def __init__(self, par):
self.openpar = par
math.__init__(self)
def xml_start(self):
open = self.translation.get(self.openpar, self.openpar)
close = self.translation.get(self.closepar, self.closepar)
return ['<mfenced open="%s" close="%s">' % (open, close)]
class mspace(math):
nchildren = 0
class mstyle(math):
def __init__(self, children=None, nchildren=None, **kwargs):
if nchildren is not None:
self.nchildren = nchildren
math.__init__(self, children)
self.attrs = kwargs
def xml_start(self):
return ['<mstyle '] + ['%s="%s"' % item
for item in self.attrs.items()] + ['>']
class mover(math):
nchildren = 2
def __init__(self, children=None, reversed=False):
self.reversed = reversed
math.__init__(self, children)
def xml(self):
if self.reversed:
self.children.reverse()
self.reversed = False
return math.xml(self)
class munder(math):
nchildren = 2
class munderover(math):
nchildren = 3
def __init__(self, children=None):
math.__init__(self, children)
class mtext(math):
nchildren = 0
def __init__(self, text):
self.text = text
def xml_body(self):
return [self.text]
over = {'tilde': '~',
'hat': '^',
'bar': '_',
'vec': u'\u2192'}
Greek = {
# Upper case greek letters:
'Phi': u'\u03a6', 'Xi': u'\u039e', 'Sigma': u'\u03a3', 'Psi': u'\u03a8', 'Delta': u'\u0394', 'Theta': u'\u0398', 'Upsilon': u'\u03d2', 'Pi': u'\u03a0', 'Omega': u'\u03a9', 'Gamma': u'\u0393', 'Lambda': u'\u039b'}
greek = {
# Lower case greek letters:
'tau': u'\u03c4', 'phi': u'\u03d5', 'xi': u'\u03be', 'iota': u'\u03b9', 'epsilon': u'\u03f5', 'varrho': u'\u03f1', 'varsigma': u'\u03c2', 'beta': u'\u03b2', 'psi': u'\u03c8', 'rho': u'\u03c1', 'delta': u'\u03b4', 'alpha': u'\u03b1', 'zeta': u'\u03b6', 'omega': u'\u03c9', 'varepsilon': u'\u03b5', 'kappa': u'\u03ba', 'vartheta': u'\u03d1', 'chi': u'\u03c7', 'upsilon': u'\u03c5', 'sigma': u'\u03c3', 'varphi': u'\u03c6', 'varpi': u'\u03d6', 'mu': u'\u03bc', 'eta': u'\u03b7', 'theta': u'\u03b8', 'pi': u'\u03c0', 'varkappa': u'\u03f0', 'nu': u'\u03bd', 'gamma': u'\u03b3', 'lambda': u'\u03bb'}
special = {
# Binary operation symbols:
'wedge': u'\u2227', 'diamond': u'\u22c4', 'star': u'\u22c6', 'amalg': u'\u2a3f', 'ast': u'\u2217', 'odot': u'\u2299', 'triangleleft': u'\u25c1', 'bigtriangleup': u'\u25b3', 'ominus': u'\u2296', 'ddagger': u'\u2021', 'wr': u'\u2240', 'otimes': u'\u2297', 'sqcup': u'\u2294', 'oplus': u'\u2295', 'bigcirc': u'\u25cb', 'oslash': u'\u2298', 'sqcap': u'\u2293', 'bullet': u'\u2219', 'cup': u'\u222a', 'cdot': u'\u22c5', 'cap': u'\u2229', 'bigtriangledown': u'\u25bd', 'times': u'\xd7', 'setminus': u'\u2216', 'circ': u'\u2218', 'vee': u'\u2228', 'uplus': u'\u228e', 'mp': u'\u2213', 'dagger': u'\u2020', 'triangleright': u'\u25b7', 'div': u'\xf7', 'pm': u'\xb1',
# Relation symbols:
'subset': u'\u2282', 'propto': u'\u221d', 'geq': u'\u2265', 'ge': u'\u2265', 'sqsubset': u'\u228f', 'Join': u'\u2a1d', 'frown': u'\u2322', 'models': u'\u22a7', 'supset': u'\u2283', 'in': u'\u2208', 'doteq': u'\u2250', 'dashv': u'\u22a3', 'gg': u'\u226b', 'leq': u'\u2264', 'succ': u'\u227b', 'vdash': u'\u22a2', 'cong': u'\u2245', 'simeq': u'\u2243', 'subseteq': u'\u2286', 'parallel': u'\u2225', 'equiv': u'\u2261', 'ni': u'\u220b', 'le': u'\u2264', 'approx': u'\u2248', 'precsim': u'\u227e', 'sqsupset': u'\u2290', 'll': u'\u226a', 'sqsupseteq': u'\u2292', 'mid': u'\u2223', 'prec': u'\u227a', 'succsim': u'\u227f', 'bowtie': u'\u22c8', 'perp': u'\u27c2', 'sqsubseteq': u'\u2291', 'asymp': u'\u224d', 'smile': u'\u2323', 'supseteq': u'\u2287', 'sim': u'\u223c', 'neq': u'\u2260',
# Arrow symbols:
'searrow': u'\u2198', 'updownarrow': u'\u2195', 'Uparrow': u'\u21d1', 'longleftrightarrow': u'\u27f7', 'Leftarrow': u'\u21d0', 'longmapsto': u'\u27fc', 'Longleftarrow': u'\u27f8', 'nearrow': u'\u2197', 'hookleftarrow': u'\u21a9', 'downarrow': u'\u2193', 'Leftrightarrow': u'\u21d4', 'longrightarrow': u'\u27f6', 'rightharpoondown': u'\u21c1', 'longleftarrow': u'\u27f5', 'rightarrow': u'\u2192', 'Updownarrow': u'\u21d5', 'rightharpoonup': u'\u21c0', 'Longleftrightarrow': u'\u27fa', 'leftarrow': u'\u2190', 'mapsto': u'\u21a6', 'nwarrow': u'\u2196', 'uparrow': u'\u2191', 'leftharpoonup': u'\u21bc', 'leftharpoondown': u'\u21bd', 'Downarrow': u'\u21d3', 'leftrightarrow': u'\u2194', 'Longrightarrow': u'\u27f9', 'swarrow': u'\u2199', 'hookrightarrow': u'\u21aa', 'Rightarrow': u'\u21d2',
# Miscellaneous symbols:
'infty': u'\u221e', 'surd': u'\u221a', 'partial': u'\u2202', 'ddots': u'\u22f1', 'exists': u'\u2203', 'flat': u'\u266d', 'diamondsuit': u'\u2662', 'wp': u'\u2118', 'spadesuit': u'\u2660', 'Re': u'\u211c', 'vdots': u'\u22ee', 'aleph': u'\u2135', 'clubsuit': u'\u2663', 'sharp': u'\u266f', 'angle': u'\u2220', 'prime': u'\u2032', 'natural': u'\u266e', 'ell': u'\u2113', 'neg': u'\xac', 'top': u'\u22a4', 'nabla': u'\u2207', 'bot': u'\u22a5', 'heartsuit': u'\u2661', 'cdots': u'\u22ef', 'Im': u'\u2111', 'forall': u'\u2200', 'imath': u'\u0131', 'hbar': u'\u210f', 'emptyset': u'\u2205',
# Variable-sized symbols:
'bigotimes': u'\u2a02', 'coprod': u'\u2210', 'int': u'\u222b', 'sum': u'\u2211', 'bigodot': u'\u2a00', 'bigcup': u'\u22c3', 'biguplus': u'\u2a04', 'bigcap': u'\u22c2', 'bigoplus': u'\u2a01', 'oint': u'\u222e', 'bigvee': u'\u22c1', 'bigwedge': u'\u22c0', 'prod': u'\u220f',
# Braces:
'langle': u'\u2329', 'rangle': u'\u232A'}
sumintprod = ''.join([special[symbol] for symbol in
['sum', 'int', 'oint', 'prod']])
functions = ['arccos', 'arcsin', 'arctan', 'arg', 'cos', 'cosh',
'cot', 'coth', 'csc', 'deg', 'det', 'dim',
'exp', 'gcd', 'hom', 'inf', 'ker', 'lg',
'lim', 'liminf', 'limsup', 'ln', 'log', 'max',
'min', 'Pr', 'sec', 'sin', 'sinh', 'sup',
'tan', 'tanh',
'injlim', 'varinjlim', 'varlimsup',
'projlim', 'varliminf', 'varprojlim']
def parse_latex_math(string, inline=True):
"""parse_latex_math(string [,inline]) -> MathML-tree
Returns a MathML-tree parsed from string. inline=True is for
inline math and inline=False is for displayed math.
tree is the whole tree and node is the current element."""
# Normalize white-space:
string = ' '.join(string.split())
if inline:
node = mrow()
tree = math(node, inline=True)
else:
node = mtd()
tree = math(mtable(mtr(node)), inline=False)
while len(string) > 0:
n = len(string)
c = string[0]
skip = 1 # number of characters consumed
if n > 1:
c2 = string[1]
else:
c2 = ''
## print n, string, c, c2, node.__class__.__name__
if c == ' ':
pass
elif c == '\\':
if c2 in '{}':
node = node.append(mo(c2))
skip = 2
elif c2 == ' ':
node = node.append(mspace())
skip = 2
elif c2.isalpha():
# We have a LaTeX-name:
i = 2
while i < n and string[i].isalpha():
i += 1
name = string[1:i]
node, skip = handle_keyword(name, node, string[i:])
skip += i
elif c2 == '\\':
# End of a row:
entry = mtd()
row = mtr(entry)
node.close().close().append(row)
node = entry
skip = 2
else:
raise SyntaxError('Syntax error: "%s%s"' % (c, c2))
elif c.isalpha():
node = node.append(mi(c))
elif c.isdigit():
node = node.append(mn(c))
elif c in "+-/()[]|=<>,.!'":
node = node.append(mo(c))
elif c == '_':
child = node.delete_child()
if isinstance(child, msup):
sub = msubsup(child.children, reversed=True)
elif isinstance(child, mo) and child.data in sumintprod:
sub = munder(child)
else:
sub = msub(child)
node.append(sub)
node = sub
elif c == '^':
child = node.delete_child()
if isinstance(child, msub):
sup = msubsup(child.children)
elif isinstance(child, mo) and child.data in sumintprod:
sup = mover(child)
elif (isinstance(child, munder) and
child.children[0].data in sumintprod):
sup = munderover(child.children)
else:
sup = msup(child)
node.append(sup)
node = sup
elif c == '{':
row = mrow()
node.append(row)
node = row
elif c == '}':
node = node.close()
elif c == '&':
entry = mtd()
node.close().append(entry)
node = entry
else:
raise SyntaxError('Illegal character: "%s"' % c)
string = string[skip:]
return tree
mathbb = {'A': u'\U0001D538',
'B': u'\U0001D539',
'C': u'\u2102',
'D': u'\U0001D53B',
'E': u'\U0001D53C',
'F': u'\U0001D53D',
'G': u'\U0001D53E',
'H': u'\u210D',
'I': u'\U0001D540',
'J': u'\U0001D541',
'K': u'\U0001D542',
'L': u'\U0001D543',
'M': u'\U0001D544',
'N': u'\u2115',
'O': u'\U0001D546',
'P': u'\u2119',
'Q': u'\u211A',
'R': u'\u211D',
'S': u'\U0001D54A',
'T': u'\U0001D54B',
'U': u'\U0001D54C',
'V': u'\U0001D54D',
'W': u'\U0001D54E',
'X': u'\U0001D54F',
'Y': u'\U0001D550',
'Z': u'\u2124'}
negatables = {'=': u'\u2260',
'\in': u'\u2209',
'\equiv': u'\u2262'}
def handle_keyword(name, node, string):
skip = 0
if len(string) > 0 and string[0] == ' ':
string = string[1:]
skip = 1
if name == 'begin':
if not string.startswith('{matrix}'):
raise SyntaxError('Expected "\begin{matrix}"!')
skip += 8
entry = mtd()
table = mtable(mtr(entry))
node.append(table)
node = entry
elif name == 'end':
if not string.startswith('{matrix}'):
raise SyntaxError('Expected "\end{matrix}"!')
skip += 8
node = node.close().close().close()
elif name == 'text':
if string[0] != '{':
raise SyntaxError('Expected "\text{...}"!')
i = string.find('}')
if i == -1:
raise SyntaxError('Expected "\text{...}"!')
node = node.append(mtext(string[1:i]))
skip += i + 1
elif name == 'sqrt':
sqrt = msqrt()
node.append(sqrt)
node = sqrt
elif name == 'frac':
frac = mfrac()
node.append(frac)
node = frac
elif name == 'left':
for par in ['(', '[', '|', '\\{', '\\langle', '.']:
if string.startswith(par):
break
else:
raise SyntaxError('Missing left-brace!')
fenced = mfenced(par)
node.append(fenced)
row = mrow()
fenced.append(row)
node = row
skip += len(par)
elif name == 'right':
for par in [')', ']', '|', '\\}', '\\rangle', '.']:
if string.startswith(par):
break
else:
raise SyntaxError('Missing right-brace!')
node = node.close()
node.closepar = par
node = node.close()
skip += len(par)
elif name == 'not':
for operator in negatables:
if string.startswith(operator):
break
else:
raise SyntaxError('Expected something to negate: "\\not ..."!')
node = node.append(mo(negatables[operator]))
skip += len(operator)
elif name == 'mathbf':
style = mstyle(nchildren=1, fontweight='bold')
node.append(style)
node = style
elif name == 'mathbb':
if string[0] != '{' or not string[1].isupper() or string[2] != '}':
raise SyntaxError('Expected something like "\mathbb{A}"!')
node = node.append(mi(mathbb[string[1]]))
skip += 3
elif name in greek:
node = node.append(mi(greek[name]))
elif name in Greek:
node = node.append(mo(Greek[name]))
elif name in special:
node = node.append(mo(special[name]))
elif name in functions:
node = node.append(mo(name))
else:
chr = over.get(name)
if chr is not None:
ovr = mover(mo(chr), reversed=True)
node.append(ovr)
node = ovr
else:
raise SyntaxError('Unknown LaTeX command: ' + name)
return node, skip
|