import numpy as np
import matplotlib.pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection
def radar_factory(num_vars, frame='circle'):
"""Create a radar chart with `num_vars` axes."""
# calculate evenly-spaced axis angles
theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars)
# rotate theta such that the first axis is at the top
theta += np.pi/2
def draw_poly_frame(self, x0, y0, r):
# TODO: use transforms to convert (x, y) to (r, theta)
verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta]
return plt.Polygon(verts, closed=True, edgecolor='k')
def draw_circle_frame(self, x0, y0, r):
return plt.Circle((x0, y0), r)
frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame}
if frame not in frame_dict:
raise ValueError, 'unknown value for `frame`: %s' % frame
class RadarAxes(PolarAxes):
"""Class for creating a radar chart (a.k.a. a spider or star chart)
http://en.wikipedia.org/wiki/Radar_chart
"""
name = 'radar'
# use 1 line segment to connect specified points
RESOLUTION = 1
# define draw_frame method
draw_frame = frame_dict[frame]
def fill(self, *args, **kwargs):
"""Override fill so that line is closed by default"""
closed = kwargs.pop('closed', True)
return super(RadarAxes, self).fill(closed=closed, *args, **kwargs)
def plot(self, *args, **kwargs):
"""Override plot so that line is closed by default"""
lines = super(RadarAxes, self).plot(*args, **kwargs)
for line in lines:
self._close_line(line)
def _close_line(self, line):
x, y = line.get_data()
# FIXME: markers at x[0], y[0] get doubled-up
if x[0] != x[-1]:
x = np.concatenate((x, [x[0]]))
y = np.concatenate((y, [y[0]]))
line.set_data(x, y)
def set_varlabels(self, labels):
self.set_thetagrids(theta * 180/np.pi, labels)
def _gen_axes_patch(self):
x0, y0 = (0.5, 0.5)
r = 0.5
return self.draw_frame(x0, y0, r)
register_projection(RadarAxes)
return theta
if __name__ == '__main__':
#The following data is from the Denver Aerosol Sources and Health study.
#See doi:10.1016/j.atmosenv.2008.12.017
#
#The data are pollution source profile estimates for five modeled pollution
#sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
#The radar charts are experimented with here to see if we can nicely
#visualize how the modeled source profiles change across four scenarios:
# 1) No gas-phase species present, just seven particulate counts on
# Sulfate
# Nitrate
# Elemental Carbon (EC)
# Organic Carbon fraction 1 (OC)
# Organic Carbon fraction 2 (OC2)
# Organic Carbon fraction 3 (OC3)
# Pyrolized Organic Carbon (OP)
# 2)Inclusion of gas-phase specie carbon monoxide (CO)
# 3)Inclusion of gas-phase specie ozone (O3).
# 4)Inclusion of both gas-phase speciesis present...
N = 9
theta = radar_factory(N)
spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO',
'O3']
f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
f1_CO = [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00]
f1_O3 = [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03]
f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01]
f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
f2_CO = [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00]
f2_O3 = [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00]
f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00]
f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
f3_CO = [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00]
f3_O3 = [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00]
f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00]
f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
f4_CO = [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00]
f4_O3 = [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95]
f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88]
f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
f5_CO = [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00]
f5_O3 = [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00]
f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16]
fig = plt.figure(figsize=(9,9))
# adjust spacing around the subplots
fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3],
'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}
colors = ['b', 'r', 'g', 'm', 'y']
# chemicals range from 0 to 1
radial_grid = [0.2, 0.4, 0.6, 0.8]
# If you don't care about the order, you can loop over data_dict.items()
for n, title in enumerate(title_list):
ax = fig.add_subplot(2, 2, n+1, projection='radar')
plt.rgrids(radial_grid)
ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
horizontalalignment='center', verticalalignment='center')
for d, color in zip(data[title], colors):
ax.plot(theta, d, color=color)
ax.fill(theta, d, facecolor=color, alpha=0.25)
ax.set_varlabels(spoke_labels)
# add legend relative to top-left plot
plt.subplot(2,2,1)
labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
plt.setp(legend.get_texts(), fontsize='small')
plt.figtext(0.5, 0.965, '5-Factor Solution Profiles Across Four Scenarios',
ha='center', color='black', weight='bold', size='large')
plt.show()
|