radar_chart.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » examples » api » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » examples » api » radar_chart.py
import numpy as np

import matplotlib.pyplot as plt
from matplotlib.projections.polar import PolarAxes
from matplotlib.projections import register_projection

def radar_factory(num_vars, frame='circle'): 
    """Create a radar chart with `num_vars` axes.""" 
    # calculate evenly-spaced axis angles 
    theta = 2*np.pi * np.linspace(0, 1-1./num_vars, num_vars) 
    # rotate theta such that the first axis is at the top 
    theta += np.pi/2 

    def draw_poly_frame(self, x0, y0, r): 
        # TODO: use transforms to convert (x, y) to (r, theta)
        verts = [(r*np.cos(t) + x0, r*np.sin(t) + y0) for t in theta] 
        return plt.Polygon(verts, closed=True, edgecolor='k') 
        
    def draw_circle_frame(self, x0, y0, r): 
        return plt.Circle((x0, y0), r) 

    frame_dict = {'polygon': draw_poly_frame, 'circle': draw_circle_frame} 
    if frame not in frame_dict: 
        raise ValueError, 'unknown value for `frame`: %s' % frame 

    class RadarAxes(PolarAxes): 
        """Class for creating a radar chart (a.k.a. a spider or star chart) 
        
        http://en.wikipedia.org/wiki/Radar_chart 
        """ 
        name = 'radar' 
        # use 1 line segment to connect specified points 
        RESOLUTION = 1 
        # define draw_frame method 
        draw_frame = frame_dict[frame] 
        
        def fill(self, *args, **kwargs): 
            """Override fill so that line is closed by default""" 
            closed = kwargs.pop('closed', True) 
            return super(RadarAxes, self).fill(closed=closed, *args, **kwargs) 
        
        def plot(self, *args, **kwargs): 
            """Override plot so that line is closed by default""" 
            lines = super(RadarAxes, self).plot(*args, **kwargs) 
            for line in lines: 
                self._close_line(line) 
        
        def _close_line(self, line): 
            x, y = line.get_data() 
            # FIXME: markers at x[0], y[0] get doubled-up 
            if x[0] != x[-1]: 
                x = np.concatenate((x, [x[0]])) 
                y = np.concatenate((y, [y[0]])) 
                line.set_data(x, y) 
        
        def set_varlabels(self, labels): 
            self.set_thetagrids(theta * 180/np.pi, labels) 
        
        def _gen_axes_patch(self): 
            x0, y0 = (0.5, 0.5) 
            r = 0.5 
            return self.draw_frame(x0, y0, r)
        
    register_projection(RadarAxes) 
    return theta 


if __name__ == '__main__': 
    #The following data is from the Denver Aerosol Sources and Health study. 
    #See  doi:10.1016/j.atmosenv.2008.12.017    
    #
    #The data are pollution source profile estimates for five modeled pollution
    #sources (e.g., cars, wood-burning, etc) that emit 7-9 chemical species.
    #The radar charts are experimented with here to see if we can nicely 
    #visualize how the modeled source profiles change across four scenarios:
    #  1) No gas-phase species present, just seven particulate counts on
    #     Sulfate
    #     Nitrate
    #     Elemental Carbon (EC)
    #     Organic Carbon fraction 1 (OC)
    #     Organic Carbon fraction 2 (OC2)
    #     Organic Carbon fraction 3 (OC3)
    #     Pyrolized Organic Carbon (OP)
    #  2)Inclusion of gas-phase specie carbon monoxide (CO) 
    #  3)Inclusion of gas-phase specie ozone (O3). 
    #  4)Inclusion of both gas-phase speciesis present...
    N = 9
    theta = radar_factory(N)
    spoke_labels = ['Sulfate', 'Nitrate', 'EC', 'OC1', 'OC2', 'OC3', 'OP', 'CO', 
                    'O3']
    f1_base = [0.88, 0.01, 0.03, 0.03, 0.00, 0.06, 0.01, 0.00, 0.00]
    f1_CO =   [0.88, 0.02, 0.02, 0.02, 0.00, 0.05, 0.00, 0.05, 0.00] 
    f1_O3 =   [0.89, 0.01, 0.07, 0.00, 0.00, 0.05, 0.00, 0.00, 0.03] 
    f1_both = [0.87, 0.01, 0.08, 0.00, 0.00, 0.04, 0.00, 0.00, 0.01] 

    f2_base = [0.07, 0.95, 0.04, 0.05, 0.00, 0.02, 0.01, 0.00, 0.00]
    f2_CO =   [0.08, 0.94, 0.04, 0.02, 0.00, 0.01, 0.12, 0.04, 0.00] 
    f2_O3 =   [0.07, 0.95, 0.05, 0.04, 0.00, 0.02, 0.12, 0.00, 0.00] 
    f2_both = [0.09, 0.95, 0.02, 0.03, 0.00, 0.01, 0.13, 0.06, 0.00] 

    f3_base = [0.01, 0.02, 0.85, 0.19, 0.05, 0.10, 0.00, 0.00, 0.00]
    f3_CO =   [0.01, 0.01, 0.79, 0.10, 0.00, 0.05, 0.00, 0.31, 0.00] 
    f3_O3 =   [0.01, 0.02, 0.86, 0.27, 0.16, 0.19, 0.00, 0.00, 0.00] 
    f3_both = [0.01, 0.02, 0.71, 0.24, 0.13, 0.16, 0.00, 0.50, 0.00] 
    
    f4_base = [0.02, 0.01, 0.07, 0.01, 0.21, 0.12, 0.98, 0.00, 0.00]
    f4_CO =   [0.00, 0.02, 0.03, 0.38, 0.31, 0.31, 0.00, 0.59, 0.00] 
    f4_O3 =   [0.01, 0.03, 0.00, 0.32, 0.29, 0.27, 0.00, 0.00, 0.95] 
    f4_both = [0.01, 0.03, 0.00, 0.28, 0.24, 0.23, 0.00, 0.44, 0.88] 

    f5_base = [0.01, 0.01, 0.02, 0.71, 0.74, 0.70, 0.00, 0.00, 0.00]
    f5_CO =   [0.02, 0.02, 0.11, 0.47, 0.69, 0.58, 0.88, 0.00, 0.00] 
    f5_O3 =   [0.02, 0.00, 0.03, 0.37, 0.56, 0.47, 0.87, 0.00, 0.00] 
    f5_both = [0.02, 0.00, 0.18, 0.45, 0.64, 0.55, 0.86, 0.00, 0.16] 

    fig = plt.figure(figsize=(9,9))
    # adjust spacing around the subplots
    fig.subplots_adjust(wspace=0.25, hspace=0.20, top=0.85, bottom=0.05)
    title_list = ['Basecase', 'With CO', 'With O3', 'CO & O3']
    data = {'Basecase': [f1_base, f2_base, f3_base, f4_base, f5_base],
            'With CO': [f1_CO, f2_CO, f3_CO, f4_CO, f5_CO],
            'With O3': [f1_O3, f2_O3, f3_O3, f4_O3, f5_O3], 
            'CO & O3': [f1_both, f2_both, f3_both, f4_both, f5_both]}
    colors = ['b', 'r', 'g', 'm', 'y']
    # chemicals range from 0 to 1
    radial_grid = [0.2, 0.4, 0.6, 0.8]
    # If you don't care about the order, you can loop over data_dict.items()
    for n, title in enumerate(title_list):
        ax = fig.add_subplot(2, 2, n+1, projection='radar')
        plt.rgrids(radial_grid)
        ax.set_title(title, weight='bold', size='medium', position=(0.5, 1.1),
                     horizontalalignment='center', verticalalignment='center')
        for d, color in zip(data[title], colors):
            ax.plot(theta, d, color=color) 
            ax.fill(theta, d, facecolor=color, alpha=0.25)  
        ax.set_varlabels(spoke_labels)
    # add legend relative to top-left plot
    plt.subplot(2,2,1)
    labels = ('Factor 1', 'Factor 2', 'Factor 3', 'Factor 4', 'Factor 5')
    legend = plt.legend(labels, loc=(0.9, .95), labelspacing=0.1)
    plt.setp(legend.get_texts(), fontsize='small')
    plt.figtext(0.5, 0.965,  '5-Factor Solution Profiles Across Four Scenarios', 
               ha='center', color='black', weight='bold', size='large')        
    plt.show()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.