import numpy as np
import matplotlib.pyplot as plt
# the random data
x = np.random.randn(1000)
y = np.random.randn(1000)
fig = plt.figure(1, figsize=(5.5,5.5))
from mpl_toolkits.axes_grid import make_axes_locatable
axScatter = plt.subplot(111)
divider = make_axes_locatable(axScatter)
# create a new axes with a height of 1.2 inch above the axScatter
axHistx = divider.new_vertical(1.2, pad=0.1, sharex=axScatter)
# create a new axes with a width of 1.2 inch on the right side of the
# axScatter
axHisty = divider.new_horizontal(1.2, pad=0.1, sharey=axScatter)
fig.add_axes(axHistx)
fig.add_axes(axHisty)
# make some labels invisible
plt.setp(axHistx.get_xticklabels() + axHisty.get_yticklabels(),
visible=False)
# the scatter plot:
axScatter.scatter(x, y)
axScatter.set_aspect(1.)
# now determine nice limits by hand:
binwidth = 0.25
xymax = np.max( [np.max(np.fabs(x)), np.max(np.fabs(y))] )
lim = ( int(xymax/binwidth) + 1) * binwidth
bins = np.arange(-lim, lim + binwidth, binwidth)
axHistx.hist(x, bins=bins)
axHisty.hist(y, bins=bins, orientation='horizontal')
# the xaxis of axHistx and yaxis of axHisty are shared with axScatter,
# thus there is no need to manually adjust the xlim and ylim of these
# axis.
#axHistx.axis["bottom"].major_ticklabels.set_visible(False)
for tl in axHistx.get_xticklabels():
tl.set_visible(False)
axHistx.set_yticks([0, 50, 100])
#axHisty.axis["left"].major_ticklabels.set_visible(False)
for tl in axHisty.get_yticklabels():
tl.set_visible(False)
axHisty.set_xticks([0, 50, 100])
plt.draw()
plt.show()
#plt.savefig("a.pdf")
|