boxplot_demo2.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » examples » pylab_examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » examples » pylab_examples » boxplot_demo2.py
"""
Thanks Josh Hemann for the example
"""

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon


# Generate some data from five different probability distributions,
# each with different characteristics. We want to play with how an IID
# bootstrap resample of the data preserves the distributional
# properties of the original sample, and a boxplot is one visual tool
# to make this assessment
numDists = 5
randomDists = ['Normal(1,1)',' Lognormal(1,1)', 'Exp(1)', 'Gumbel(6,4)',
              'Triangular(2,9,11)']
N = 500
norm = np.random.normal(1,1, N)
logn = np.random.lognormal(1,1, N)
expo = np.random.exponential(1, N)
gumb = np.random.gumbel(6, 4, N)
tria = np.random.triangular(2, 9, 11, N)

# Generate some random indices that we'll use to resample the original data
# arrays. For code brevity, just use the same random indices for each array
bootstrapIndices = np.random.random_integers(0, N-1, N)
normBoot = norm[bootstrapIndices]
expoBoot = expo[bootstrapIndices]
gumbBoot = gumb[bootstrapIndices]
lognBoot = logn[bootstrapIndices]
triaBoot = tria[bootstrapIndices]

data = [norm, normBoot,  logn, lognBoot, expo, expoBoot, gumb, gumbBoot,
       tria, triaBoot]

fig = plt.figure(figsize=(10,6))
fig.canvas.set_window_title('A Boxplot Example')
ax1 = fig.add_subplot(111)
plt.subplots_adjust(left=0.075, right=0.95, top=0.9, bottom=0.25)

bp = plt.boxplot(data, notch=0, sym='+', vert=1, whis=1.5)
plt.setp(bp['boxes'], color='black')
plt.setp(bp['whiskers'], color='black')
plt.setp(bp['fliers'], color='red', marker='+')

# Add a horizontal grid to the plot, but make it very light in color
# so we can use it for reading data values but not be distracting
ax1.yaxis.grid(True, linestyle='-', which='major', color='lightgrey',
              alpha=0.5)

# Hide these grid behind plot objects
ax1.set_axisbelow(True)
ax1.set_title('Comparison of IID Bootstrap Resampling Across Five Distributions')
ax1.set_xlabel('Distribution')
ax1.set_ylabel('Value')

# Now fill the boxes with desired colors
boxColors = ['darkkhaki','royalblue']
numBoxes = numDists*2
medians = range(numBoxes)
for i in range(numBoxes):
  box = bp['boxes'][i]
  boxX = []
  boxY = []
  for j in range(5):
      boxX.append(box.get_xdata()[j])
      boxY.append(box.get_ydata()[j])
  boxCoords = zip(boxX,boxY)
  # Alternate between Dark Khaki and Royal Blue
  k = i % 2
  boxPolygon = Polygon(boxCoords, facecolor=boxColors[k])
  ax1.add_patch(boxPolygon)
  # Now draw the median lines back over what we just filled in
  med = bp['medians'][i]
  medianX = []
  medianY = []
  for j in range(2):
      medianX.append(med.get_xdata()[j])
      medianY.append(med.get_ydata()[j])
      plt.plot(medianX, medianY, 'k')
      medians[i] = medianY[0]
  # Finally, overplot the sample averages, with horixzontal alignment
  # in the center of each box
  plt.plot([np.average(med.get_xdata())], [np.average(data[i])],
           color='w', marker='*', markeredgecolor='k')

# Set the axes ranges and axes labels
ax1.set_xlim(0.5, numBoxes+0.5)
top = 40
bottom = -5
ax1.set_ylim(bottom, top)
xtickNames = plt.setp(ax1, xticklabels=np.repeat(randomDists, 2))
plt.setp(xtickNames, rotation=45, fontsize=8)

# Due to the Y-axis scale being different across samples, it can be
# hard to compare differences in medians across the samples. Add upper
# X-axis tick labels with the sample medians to aid in comparison
# (just use two decimal places of precision)
pos = np.arange(numBoxes)+1
upperLabels = [str(np.round(s, 2)) for s in medians]
weights = ['bold', 'semibold']
for tick,label in zip(range(numBoxes),ax1.get_xticklabels()):
   k = tick % 2
   ax1.text(pos[tick], top-(top*0.05), upperLabels[tick],
        horizontalalignment='center', size='x-small', weight=weights[k],
        color=boxColors[k])

# Finally, add a basic legend
plt.figtext(0.80, 0.08,  str(N) + ' Random Numbers' ,
           backgroundcolor=boxColors[0], color='black', weight='roman',
           size='x-small')
plt.figtext(0.80, 0.045, 'IID Bootstrap Resample',
backgroundcolor=boxColors[1],
           color='white', weight='roman', size='x-small')
plt.figtext(0.80, 0.015, '*', color='white', backgroundcolor='silver',
           weight='roman', size='medium')
plt.figtext(0.815, 0.013, ' Average Value', color='black', weight='roman',
           size='x-small')

plt.show()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.