histogram_demo_extended.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » examples » pylab_examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » examples » pylab_examples » histogram_demo_extended.py
#!/usr/bin/env python
import pylab as P

#
# The hist() function now has a lot more options
#

#
# first create a single histogram
#
mu, sigma = 200, 25
x = mu + sigma*P.randn(10000)

# the histogram of the data with histtype='step'
n, bins, patches = P.hist(x, 50, normed=1, histtype='stepfilled')
P.setp(patches, 'facecolor', 'g', 'alpha', 0.75)

# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma)
l = P.plot(bins, y, 'k--', linewidth=1.5)


#
# create a histogram by providing the bin edges (unequally spaced)
#
P.figure()

bins = [100,125,150,160,170,180,190,200,210,220,230,240,250,275,300]
# the histogram of the data with histtype='step'
n, bins, patches = P.hist(x, bins, normed=1, histtype='bar', rwidth=0.8)

#
# now we create a cumulative histogram of the data
#
P.figure()

n, bins, patches = P.hist(x, 50, normed=1, histtype='step', cumulative=True)

# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'k--', linewidth=1.5)

# create a second data-set with a smaller standard deviation
sigma2 = 15.
x = mu + sigma2*P.randn(10000)

n, bins, patches = P.hist(x, bins=bins, normed=1, histtype='step', cumulative=True)

# add a line showing the expected distribution
y = P.normpdf( bins, mu, sigma2).cumsum()
y /= y[-1]
l = P.plot(bins, y, 'r--', linewidth=1.5)

# finally overplot a reverted cumulative histogram
n, bins, patches = P.hist(x, bins=bins, normed=1,
    histtype='step', cumulative=-1)


P.grid(True)
P.ylim(0, 1.05)


#
# histogram has the ability to plot multiple data in parallel ...
#
P.figure()

# create a new data-set
x = mu + sigma*P.randn(1000,3)

n, bins, patches = P.hist(x, 10, normed=1, histtype='bar')

#
# ... or we can stack the data
#
P.figure()

n, bins, patches = P.hist(x, 10, normed=1, histtype='barstacked')

#
# finally: make a multiple-histogram of data-sets with different length
#
x0 = mu + sigma*P.randn(10000)
x1 = mu + sigma*P.randn(7000)
x2 = mu + sigma*P.randn(3000)

P.figure()

n, bins, patches = P.hist( [x0,x1,x2], 10, histtype='bar')

P.show()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.