# -*- coding: iso-8859-1 -*-
"""
A PDF matplotlib backend (not yet complete)
Author: Jouni K Seppnen <jks@iki.fi>
"""
from __future__ import division
import os
import re
import sys
import time
import warnings
import zlib
import numpy as npy
from cStringIO import StringIO
from datetime import datetime
from math import ceil,cos,floor,pi,sin
try:
set
except NameError:
from sets import Set
import matplotlib
from matplotlib import __version__,rcParams,get_data_path
from matplotlib._pylab_helpers import Gcf
from matplotlib.backend_bases import RendererBase,GraphicsContextBase,\
FigureManagerBase, FigureCanvasBase
from matplotlib.backends.backend_mixed import MixedModeRenderer
from matplotlib.cbook import Bunch,is_string_like,reverse_dict,\
get_realpath_and_stat, is_writable_file_like, maxdict
from matplotlib.mlab import quad2cubic
from matplotlib.figure import Figure
from matplotlib.font_manager import findfont,is_opentype_cff_font
from matplotlib.afm import AFM
import matplotlib.type1font as type1font
import matplotlib.dviread as dviread
from matplotlib.ft2font import FT2Font,FIXED_WIDTH,ITALIC,LOAD_NO_SCALE,\
LOAD_NO_HINTING, KERNING_UNFITTED
from matplotlib.mathtext import MathTextParser
from matplotlib.transforms import Affine2D,Bbox,BboxBase,TransformedPath
from matplotlib.path import Path
from matplotlib import ttconv
# Overview
#
# The low-level knowledge about pdf syntax lies mainly in the pdfRepr
# function and the classes Reference, Name, Operator, and Stream. The
# PdfFile class knows about the overall structure of pdf documents.
# It provides a "write" method for writing arbitrary strings in the
# file, and an "output" method that passes objects through the pdfRepr
# function before writing them in the file. The output method is
# called by the RendererPdf class, which contains the various draw_foo
# methods. RendererPdf contains a GraphicsContextPdf instance, and
# each draw_foo calls self.check_gc before outputting commands. This
# method checks whether the pdf graphics state needs to be modified
# and outputs the necessary commands. GraphicsContextPdf represents
# the graphics state, and its "delta" method returns the commands that
# modify the state.
# Add "pdf.use14corefonts: True" in your configuration file to use only
# the 14 PDF core fonts. These fonts do not need to be embedded; every
# PDF viewing application is required to have them. This results in very
# light PDF files you can use directly in LaTeX or ConTeXt documents
# generated with pdfTeX, without any conversion.
# These fonts are: Helvetica, Helvetica-Bold, Helvetica-Oblique,
# Helvetica-BoldOblique, Courier, Courier-Bold, Courier-Oblique,
# Courier-BoldOblique, Times-Roman, Times-Bold, Times-Italic,
# Times-BoldItalic, Symbol, ZapfDingbats.
#
# Some tricky points:
#
# 1. The clip path can only be widened by popping from the state
# stack. Thus the state must be pushed onto the stack before narrowing
# the clip path. This is taken care of by GraphicsContextPdf.
#
# 2. Sometimes it is necessary to refer to something (e.g. font,
# image, or extended graphics state, which contains the alpha value)
# in the page stream by a name that needs to be defined outside the
# stream. PdfFile provides the methods fontName, imageObject, and
# alphaState for this purpose. The implementations of these methods
# should perhaps be generalized.
# TODOs:
#
# * the alpha channel of images
# * image compression could be improved (PDF supports png-like compression)
# * encoding of fonts, including mathtext fonts and unicode support
# * TTF support has lots of small TODOs, e.g. how do you know if a font
# is serif/sans-serif, or symbolic/non-symbolic?
# * draw_markers, draw_line_collection, etc.
def fill(strings, linelen=75):
"""Make one string from sequence of strings, with whitespace
in between. The whitespace is chosen to form lines of at most
linelen characters, if possible."""
currpos = 0
lasti = 0
result = []
for i, s in enumerate(strings):
length = len(s)
if currpos + length < linelen:
currpos += length + 1
else:
result.append(' '.join(strings[lasti:i]))
lasti = i
currpos = length
result.append(' '.join(strings[lasti:]))
return '\n'.join(result)
# PDF strings are supposed to be able to include any eight-bit data,
# except that unbalanced parens and backslashes must be escaped by a
# backslash. However, sf bug #2708559 shows that the carriage return
# character may get read as a newline; these characters correspond to
# \gamma and \Omega in TeX's math font encoding. Escaping them fixes
# the bug.
_string_escape_regex = re.compile(r'([\\()\r\n])')
def _string_escape(match):
m = match.group(0)
if m in r'\()': return '\\' + m
elif m == '\n': return r'\n'
elif m == '\r': return r'\r'
assert False
def pdfRepr(obj):
"""Map Python objects to PDF syntax."""
# Some objects defined later have their own pdfRepr method.
if hasattr(obj, 'pdfRepr'):
return obj.pdfRepr()
# Floats. PDF does not have exponential notation (1.0e-10) so we
# need to use %f with some precision. Perhaps the precision
# should adapt to the magnitude of the number?
elif isinstance(obj, float):
if not npy.isfinite(obj):
raise ValueError, "Can only output finite numbers in PDF"
r = "%.10f" % obj
return r.rstrip('0').rstrip('.')
# Integers are written as such.
elif isinstance(obj, (int, long)):
return "%d" % obj
# Strings are written in parentheses, with backslashes and parens
# escaped. Actually balanced parens are allowed, but it is
# simpler to escape them all. TODO: cut long strings into lines;
# I believe there is some maximum line length in PDF.
elif is_string_like(obj):
return '(' + _string_escape_regex.sub(_string_escape, obj) + ')'
# Dictionaries. The keys must be PDF names, so if we find strings
# there, we make Name objects from them. The values may be
# anything, so the caller must ensure that PDF names are
# represented as Name objects.
elif isinstance(obj, dict):
r = ["<<"]
r.extend(["%s %s" % (Name(key).pdfRepr(), pdfRepr(val))
for key, val in obj.items()])
r.append(">>")
return fill(r)
# Lists.
elif isinstance(obj, (list, tuple)):
r = ["["]
r.extend([pdfRepr(val) for val in obj])
r.append("]")
return fill(r)
# Booleans.
elif isinstance(obj, bool):
return ['false', 'true'][obj]
# The null keyword.
elif obj is None:
return 'null'
# A date.
elif isinstance(obj, datetime):
r = obj.strftime('D:%Y%m%d%H%M%S')
if time.daylight: z = time.altzone
else: z = time.timezone
if z == 0: r += 'Z'
elif z < 0: r += "+%02d'%02d'" % ((-z)//3600, (-z)%3600)
else: r += "-%02d'%02d'" % (z//3600, z%3600)
return pdfRepr(r)
# A bounding box
elif isinstance(obj, BboxBase):
return fill([pdfRepr(val) for val in obj.bounds])
else:
raise TypeError, \
"Don't know a PDF representation for %s objects." \
% type(obj)
class Reference(object):
"""PDF reference object.
Use PdfFile.reserveObject() to create References.
"""
def __init__(self, id):
self.id = id
def __repr__(self):
return "<Reference %d>" % self.id
def pdfRepr(self):
return "%d 0 R" % self.id
def write(self, contents, file):
write = file.write
write("%d 0 obj\n" % self.id)
write(pdfRepr(contents))
write("\nendobj\n")
class Name(object):
"""PDF name object."""
__slots__ = ('name',)
_regex = re.compile(r'[^!-~]')
def __init__(self, name):
if isinstance(name, Name):
self.name = name.name
else:
self.name = self._regex.sub(Name.hexify, name)
def __repr__(self):
return "<Name %s>" % self.name
def __str__(self):
return '/' + self.name
@staticmethod
def hexify(match):
return '#%02x' % ord(match.group())
def pdfRepr(self):
return '/' + self.name
class Operator(object):
"""PDF operator object."""
__slots__ = ('op',)
def __init__(self, op):
self.op = op
def __repr__(self):
return '<Operator %s>' % self.op
def pdfRepr(self):
return self.op
# PDF operators (not an exhaustive list)
_pdfops = dict(close_fill_stroke='b', fill_stroke='B', fill='f',
closepath='h', close_stroke='s', stroke='S', endpath='n',
begin_text='BT', end_text='ET',
curveto='c', rectangle='re', lineto='l', moveto='m',
concat_matrix='cm',
use_xobject='Do',
setgray_stroke='G', setgray_nonstroke='g',
setrgb_stroke='RG', setrgb_nonstroke='rg',
setcolorspace_stroke='CS', setcolorspace_nonstroke='cs',
setcolor_stroke='SCN', setcolor_nonstroke='scn',
setdash='d', setlinejoin='j', setlinecap='J', setgstate='gs',
gsave='q', grestore='Q',
textpos='Td', selectfont='Tf', textmatrix='Tm',
show='Tj', showkern='TJ',
setlinewidth='w', clip='W')
Op = Bunch(**dict([(name, Operator(value))
for name, value in _pdfops.items()]))
class Stream(object):
"""PDF stream object.
This has no pdfRepr method. Instead, call begin(), then output the
contents of the stream by calling write(), and finally call end().
"""
__slots__ = ('id', 'len', 'pdfFile', 'file', 'compressobj', 'extra', 'pos')
def __init__(self, id, len, file, extra=None):
"""id: object id of stream; len: an unused Reference object for the
length of the stream, or None (to use a memory buffer); file:
a PdfFile; extra: a dictionary of extra key-value pairs to
include in the stream header """
self.id = id # object id
self.len = len # id of length object
self.pdfFile = file
self.file = file.fh # file to which the stream is written
self.compressobj = None # compression object
if extra is None: self.extra = dict()
else: self.extra = extra
self.pdfFile.recordXref(self.id)
if rcParams['pdf.compression']:
self.compressobj = zlib.compressobj(rcParams['pdf.compression'])
if self.len is None:
self.file = StringIO()
else:
self._writeHeader()
self.pos = self.file.tell()
def _writeHeader(self):
write = self.file.write
write("%d 0 obj\n" % self.id)
dict = self.extra
dict['Length'] = self.len
if rcParams['pdf.compression']:
dict['Filter'] = Name('FlateDecode')
write(pdfRepr(dict))
write("\nstream\n")
def end(self):
"""Finalize stream."""
self._flush()
if self.len is None:
contents = self.file.getvalue()
self.len = len(contents)
self.file = self.pdfFile.fh
self._writeHeader()
self.file.write(contents)
self.file.write("\nendstream\nendobj\n")
else:
length = self.file.tell() - self.pos
self.file.write("\nendstream\nendobj\n")
self.pdfFile.writeObject(self.len, length)
def write(self, data):
"""Write some data on the stream."""
if self.compressobj is None:
self.file.write(data)
else:
compressed = self.compressobj.compress(data)
self.file.write(compressed)
def _flush(self):
"""Flush the compression object."""
if self.compressobj is not None:
compressed = self.compressobj.flush()
self.file.write(compressed)
self.compressobj = None
class PdfFile(object):
"""PDF file with one page."""
def __init__(self, filename):
self.nextObject = 1 # next free object id
self.xrefTable = [ [0, 65535, 'the zero object'] ]
self.passed_in_file_object = False
if is_string_like(filename):
fh = file(filename, 'wb')
elif is_writable_file_like(filename):
fh = filename
self.passed_in_file_object = True
else:
raise ValueError("filename must be a path or a file-like object")
self.fh = fh
self.currentstream = None # stream object to write to, if any
fh.write("%PDF-1.4\n") # 1.4 is the first version to have alpha
# Output some eight-bit chars as a comment so various utilities
# recognize the file as binary by looking at the first few
# lines (see note in section 3.4.1 of the PDF reference).
fh.write("%\254\334 \253\272\n")
self.rootObject = self.reserveObject('root')
self.infoObject = self.reserveObject('info')
self.pagesObject = self.reserveObject('pages')
self.pageList = []
self.fontObject = self.reserveObject('fonts')
self.alphaStateObject = self.reserveObject('extended graphics states')
self.hatchObject = self.reserveObject('tiling patterns')
self.XObjectObject = self.reserveObject('external objects')
self.resourceObject = self.reserveObject('resources')
root = { 'Type': Name('Catalog'),
'Pages': self.pagesObject }
self.writeObject(self.rootObject, root)
info = { 'Creator': 'matplotlib ' + __version__ \
+ ', http://matplotlib.sf.net',
'Producer': 'matplotlib pdf backend',
'CreationDate': datetime.today() }
# Possible TODO: Title, Author, Subject, Keywords
self.writeObject(self.infoObject, info)
self.fontNames = {} # maps filenames to internal font names
self.nextFont = 1 # next free internal font name
self.dviFontInfo = {} # information on dvi fonts
self.type1Descriptors = {} # differently encoded Type-1 fonts may
# share the same descriptor
self.used_characters = {}
self.alphaStates = {} # maps alpha values to graphics state objects
self.nextAlphaState = 1
self.hatchPatterns = {}
self.nextHatch = 1
self.images = {}
self.nextImage = 1
self.markers = {}
self.multi_byte_charprocs = {}
# The PDF spec recommends to include every procset
procsets = [ Name(x)
for x in "PDF Text ImageB ImageC ImageI".split() ]
# Write resource dictionary.
# Possibly TODO: more general ExtGState (graphics state dictionaries)
# ColorSpace Pattern Shading Properties
resources = { 'Font': self.fontObject,
'XObject': self.XObjectObject,
'ExtGState': self.alphaStateObject,
'Pattern': self.hatchObject,
'ProcSet': procsets }
self.writeObject(self.resourceObject, resources)
def newPage(self, width, height):
self.endStream()
self.width, self.height = width, height
contentObject = self.reserveObject('page contents')
thePage = { 'Type': Name('Page'),
'Parent': self.pagesObject,
'Resources': self.resourceObject,
'MediaBox': [ 0, 0, 72*width, 72*height ],
'Contents': contentObject }
pageObject = self.reserveObject('page')
self.writeObject(pageObject, thePage)
self.pageList.append(pageObject)
self.beginStream(contentObject.id,
self.reserveObject('length of content stream'))
# Initialize the pdf graphics state to match the default mpl
# graphics context: currently only the join style needs to be set
self.output(GraphicsContextPdf.joinstyles['round'], Op.setlinejoin)
def close(self):
self.endStream()
# Write out the various deferred objects
self.writeFonts()
self.writeObject(self.alphaStateObject,
dict([(val[0], val[1])
for val in self.alphaStates.values()]))
self.writeHatches()
xobjects = dict(self.images.values())
for tup in self.markers.values():
xobjects[tup[0]] = tup[1]
for name, value in self.multi_byte_charprocs.items():
xobjects[name] = value
self.writeObject(self.XObjectObject, xobjects)
self.writeImages()
self.writeMarkers()
self.writeObject(self.pagesObject,
{ 'Type': Name('Pages'),
'Kids': self.pageList,
'Count': len(self.pageList) })
# Finalize the file
self.writeXref()
self.writeTrailer()
if self.passed_in_file_object:
self.fh.flush()
else:
self.fh.close()
def write(self, data):
if self.currentstream is None:
self.fh.write(data)
else:
self.currentstream.write(data)
def output(self, *data):
self.write(fill(map(pdfRepr, data)))
self.write('\n')
def beginStream(self, id, len, extra=None):
assert self.currentstream is None
self.currentstream = Stream(id, len, self, extra)
def endStream(self):
if self.currentstream is not None:
self.currentstream.end()
self.currentstream = None
def fontName(self, fontprop):
"""
Select a font based on fontprop and return a name suitable for
Op.selectfont. If fontprop is a string, it will be interpreted
as the filename (or dvi name) of the font.
"""
if is_string_like(fontprop):
filename = fontprop
elif rcParams['pdf.use14corefonts']:
filename = findfont(fontprop, fontext='afm')
else:
filename = findfont(fontprop)
Fx = self.fontNames.get(filename)
if Fx is None:
Fx = Name('F%d' % self.nextFont)
self.fontNames[filename] = Fx
self.nextFont += 1
matplotlib.verbose.report(
'Assigning font %s = %s' % (Fx, filename),
'debug')
return Fx
def writeFonts(self):
fonts = {}
for filename, Fx in self.fontNames.items():
matplotlib.verbose.report('Embedding font %s' % filename, 'debug')
if filename.endswith('.afm'):
# from pdf.use14corefonts
matplotlib.verbose.report('Writing AFM font', 'debug')
fonts[Fx] = self._write_afm_font(filename)
elif self.dviFontInfo.has_key(filename):
# a Type 1 font from a dvi file; the filename is really the TeX name
matplotlib.verbose.report('Writing Type-1 font', 'debug')
fonts[Fx] = self.embedTeXFont(filename, self.dviFontInfo[filename])
else:
# a normal TrueType font
matplotlib.verbose.report('Writing TrueType font', 'debug')
realpath, stat_key = get_realpath_and_stat(filename)
chars = self.used_characters.get(stat_key)
if chars is not None and len(chars[1]):
fonts[Fx] = self.embedTTF(realpath, chars[1])
self.writeObject(self.fontObject, fonts)
def _write_afm_font(self, filename):
fh = file(filename)
font = AFM(fh)
fh.close()
fontname = font.get_fontname()
fontdict = { 'Type': Name('Font'),
'Subtype': Name('Type1'),
'BaseFont': Name(fontname),
'Encoding': Name('WinAnsiEncoding') }
fontdictObject = self.reserveObject('font dictionary')
self.writeObject(fontdictObject, fontdict)
return fontdictObject
def embedTeXFont(self, texname, fontinfo):
matplotlib.verbose.report(
'Embedding TeX font ' + texname + ' - fontinfo=' + `fontinfo.__dict__`,
'debug')
# Widths
widthsObject = self.reserveObject('font widths')
self.writeObject(widthsObject, fontinfo.dvifont.widths)
# Font dictionary
fontdictObject = self.reserveObject('font dictionary')
fontdict = {
'Type': Name('Font'),
'Subtype': Name('Type1'),
'FirstChar': 0,
'LastChar': len(fontinfo.dvifont.widths) - 1,
'Widths': widthsObject,
}
# Encoding (if needed)
if fontinfo.encodingfile is not None:
enc = dviread.Encoding(fontinfo.encodingfile)
differencesArray = [ Name(ch) for ch in enc ]
differencesArray = [ 0 ] + differencesArray
fontdict['Encoding'] = \
{ 'Type': Name('Encoding'),
'Differences': differencesArray }
# If no file is specified, stop short
if fontinfo.fontfile is None:
warnings.warn(
'Because of TeX configuration (pdftex.map, see updmap ' +
'option pdftexDownloadBase14) the font %s ' % fontinfo.basefont +
'is not embedded. This is deprecated as of PDF 1.5 ' +
'and it may cause the consumer application to show something ' +
'that was not intended.')
fontdict['BaseFont'] = Name(fontinfo.basefont)
self.writeObject(fontdictObject, fontdict)
return fontdictObject
# We have a font file to embed - read it in and apply any effects
t1font = type1font.Type1Font(fontinfo.fontfile)
if fontinfo.effects:
t1font = t1font.transform(fontinfo.effects)
fontdict['BaseFont'] = Name(t1font.prop['FontName'])
# Font descriptors may be shared between differently encoded
# Type-1 fonts, so only create a new descriptor if there is no
# existing descriptor for this font.
effects = (fontinfo.effects.get('slant', 0.0), fontinfo.effects.get('extend', 1.0))
fontdesc = self.type1Descriptors.get((fontinfo.fontfile, effects))
if fontdesc is None:
fontdesc = self.createType1Descriptor(t1font, fontinfo.fontfile)
self.type1Descriptors[(fontinfo.fontfile, effects)] = fontdesc
fontdict['FontDescriptor'] = fontdesc
self.writeObject(fontdictObject, fontdict)
return fontdictObject
def createType1Descriptor(self, t1font, fontfile):
# Create and write the font descriptor and the font file
# of a Type-1 font
fontdescObject = self.reserveObject('font descriptor')
fontfileObject = self.reserveObject('font file')
italic_angle = t1font.prop['ItalicAngle']
fixed_pitch = t1font.prop['isFixedPitch']
flags = 0
if fixed_pitch: flags |= 1 << 0 # fixed width
if 0: flags |= 1 << 1 # TODO: serif
if 1: flags |= 1 << 2 # TODO: symbolic (most TeX fonts are)
else: flags |= 1 << 5 # non-symbolic
if italic_angle: flags |= 1 << 6 # italic
if 0: flags |= 1 << 16 # TODO: all caps
if 0: flags |= 1 << 17 # TODO: small caps
if 0: flags |= 1 << 18 # TODO: force bold
ft2font = FT2Font(fontfile)
descriptor = {
'Type': Name('FontDescriptor'),
'FontName': Name(t1font.prop['FontName']),
'Flags': flags,
'FontBBox': ft2font.bbox,
'ItalicAngle': italic_angle,
'Ascent': ft2font.ascender,
'Descent': ft2font.descender,
'CapHeight': 1000, # TODO: find this out
'XHeight': 500, # TODO: this one too
'FontFile': fontfileObject,
'FontFamily': t1font.prop['FamilyName'],
'StemV': 50, # TODO
# (see also revision 3874; but not all TeX distros have AFM files!)
#'FontWeight': a number where 400 = Regular, 700 = Bold
}
self.writeObject(fontdescObject, descriptor)
self.beginStream(fontfileObject.id, None,
{ 'Length1': len(t1font.parts[0]),
'Length2': len(t1font.parts[1]),
'Length3': 0 })
self.currentstream.write(t1font.parts[0])
self.currentstream.write(t1font.parts[1])
self.endStream()
return fontdescObject
def _get_xobject_symbol_name(self, filename, symbol_name):
return "%s-%s" % (
os.path.splitext(os.path.basename(filename))[0],
symbol_name)
_identityToUnicodeCMap = """/CIDInit /ProcSet findresource begin
12 dict begin
begincmap
/CIDSystemInfo
<< /Registry (Adobe)
/Ordering (UCS)
/Supplement 0
>> def
/CMapName /Adobe-Identity-UCS def
/CMapType 2 def
1 begincodespacerange
<0000> <ffff>
endcodespacerange
%d beginbfrange
%s
endbfrange
endcmap
CMapName currentdict /CMap defineresource pop
end
end"""
def embedTTF(self, filename, characters):
"""Embed the TTF font from the named file into the document."""
font = FT2Font(str(filename))
fonttype = rcParams['pdf.fonttype']
def cvt(length, upe=font.units_per_EM, nearest=True):
"Convert font coordinates to PDF glyph coordinates"
value = length / upe * 1000
if nearest: return round(value)
# Perhaps best to round away from zero for bounding
# boxes and the like
if value < 0: return floor(value)
else: return ceil(value)
def embedTTFType3(font, characters, descriptor):
"""The Type 3-specific part of embedding a Truetype font"""
widthsObject = self.reserveObject('font widths')
fontdescObject = self.reserveObject('font descriptor')
fontdictObject = self.reserveObject('font dictionary')
charprocsObject = self.reserveObject('character procs')
differencesArray = []
firstchar, lastchar = 0, 255
bbox = [cvt(x, nearest=False) for x in font.bbox]
fontdict = {
'Type' : Name('Font'),
'BaseFont' : ps_name,
'FirstChar' : firstchar,
'LastChar' : lastchar,
'FontDescriptor' : fontdescObject,
'Subtype' : Name('Type3'),
'Name' : descriptor['FontName'],
'FontBBox' : bbox,
'FontMatrix' : [ .001, 0, 0, .001, 0, 0 ],
'CharProcs' : charprocsObject,
'Encoding' : {
'Type' : Name('Encoding'),
'Differences' : differencesArray},
'Widths' : widthsObject
}
# Make the "Widths" array
from encodings import cp1252
# The "decoding_map" was changed to a "decoding_table" as of Python 2.5.
if hasattr(cp1252, 'decoding_map'):
def decode_char(charcode):
return cp1252.decoding_map[charcode] or 0
else:
def decode_char(charcode):
return ord(cp1252.decoding_table[charcode])
def get_char_width(charcode):
unicode = decode_char(charcode)
width = font.load_char(unicode, flags=LOAD_NO_SCALE|LOAD_NO_HINTING).horiAdvance
return cvt(width)
widths = [ get_char_width(charcode) for charcode in range(firstchar, lastchar+1) ]
descriptor['MaxWidth'] = max(widths)
# Make the "Differences" array, sort the ccodes < 255 from
# the multi-byte ccodes, and build the whole set of glyph ids
# that we need from this font.
cmap = font.get_charmap()
glyph_ids = []
differences = []
multi_byte_chars = set()
for c in characters:
ccode = c
gind = cmap.get(ccode) or 0
glyph_ids.append(gind)
glyph_name = font.get_glyph_name(gind)
if ccode <= 255:
differences.append((ccode, glyph_name))
else:
multi_byte_chars.add(glyph_name)
differences.sort()
last_c = -2
for c, name in differences:
if c != last_c + 1:
differencesArray.append(c)
differencesArray.append(Name(name))
last_c = c
# Make the charprocs array (using ttconv to generate the
# actual outlines)
rawcharprocs = ttconv.get_pdf_charprocs(filename, glyph_ids)
charprocs = {}
charprocsRef = {}
for charname, stream in rawcharprocs.items():
charprocDict = { 'Length': len(stream) }
# The 2-byte characters are used as XObjects, so they
# need extra info in their dictionary
if charname in multi_byte_chars:
charprocDict['Type'] = Name('XObject')
charprocDict['Subtype'] = Name('Form')
charprocDict['BBox'] = bbox
# Each glyph includes bounding box information,
# but xpdf and ghostscript can't handle it in a
# Form XObject (they segfault!!!), so we remove it
# from the stream here. It's not needed anyway,
# since the Form XObject includes it in its BBox
# value.
stream = stream[stream.find("d1") + 2:]
charprocObject = self.reserveObject('charProc')
self.beginStream(charprocObject.id, None, charprocDict)
self.currentstream.write(stream)
self.endStream()
# Send the glyphs with ccode > 255 to the XObject dictionary,
# and the others to the font itself
if charname in multi_byte_chars:
name = self._get_xobject_symbol_name(filename, charname)
self.multi_byte_charprocs[name] = charprocObject
else:
charprocs[charname] = charprocObject
# Write everything out
self.writeObject(fontdictObject, fontdict)
self.writeObject(fontdescObject, descriptor)
self.writeObject(widthsObject, widths)
self.writeObject(charprocsObject, charprocs)
return fontdictObject
def embedTTFType42(font, characters, descriptor):
"""The Type 42-specific part of embedding a Truetype font"""
fontdescObject = self.reserveObject('font descriptor')
cidFontDictObject = self.reserveObject('CID font dictionary')
type0FontDictObject = self.reserveObject('Type 0 font dictionary')
cidToGidMapObject = self.reserveObject('CIDToGIDMap stream')
fontfileObject = self.reserveObject('font file stream')
wObject = self.reserveObject('Type 0 widths')
toUnicodeMapObject = self.reserveObject('ToUnicode map')
cidFontDict = {
'Type' : Name('Font'),
'Subtype' : Name('CIDFontType2'),
'BaseFont' : ps_name,
'CIDSystemInfo' : {
'Registry' : 'Adobe',
'Ordering' : 'Identity',
'Supplement' : 0 },
'FontDescriptor' : fontdescObject,
'W' : wObject,
'CIDToGIDMap' : cidToGidMapObject
}
type0FontDict = {
'Type' : Name('Font'),
'Subtype' : Name('Type0'),
'BaseFont' : ps_name,
'Encoding' : Name('Identity-H'),
'DescendantFonts' : [cidFontDictObject],
'ToUnicode' : toUnicodeMapObject
}
# Make fontfile stream
descriptor['FontFile2'] = fontfileObject
length1Object = self.reserveObject('decoded length of a font')
self.beginStream(
fontfileObject.id,
self.reserveObject('length of font stream'),
{'Length1': length1Object})
fontfile = open(filename, 'rb')
length1 = 0
while True:
data = fontfile.read(4096)
if not data: break
length1 += len(data)
self.currentstream.write(data)
fontfile.close()
self.endStream()
self.writeObject(length1Object, length1)
# Make the 'W' (Widths) array, CidToGidMap and ToUnicode CMap
# at the same time
cid_to_gid_map = [u'\u0000'] * 65536
cmap = font.get_charmap()
unicode_mapping = []
widths = []
max_ccode = 0
for c in characters:
ccode = c
gind = cmap.get(ccode) or 0
glyph = font.load_char(ccode, flags=LOAD_NO_HINTING)
widths.append((ccode, glyph.horiAdvance / 6))
if ccode < 65536:
cid_to_gid_map[ccode] = unichr(gind)
max_ccode = max(ccode, max_ccode)
widths.sort()
cid_to_gid_map = cid_to_gid_map[:max_ccode + 1]
last_ccode = -2
w = []
max_width = 0
unicode_groups = []
for ccode, width in widths:
if ccode != last_ccode + 1:
w.append(ccode)
w.append([width])
unicode_groups.append([ccode, ccode])
else:
w[-1].append(width)
unicode_groups[-1][1] = ccode
max_width = max(max_width, width)
last_ccode = ccode
unicode_bfrange = []
for start, end in unicode_groups:
unicode_bfrange.append(
"<%04x> <%04x> [%s]" %
(start, end,
" ".join(["<%04x>" % x for x in range(start, end+1)])))
unicode_cmap = (self._identityToUnicodeCMap %
(len(unicode_groups),
"\n".join(unicode_bfrange)))
# CIDToGIDMap stream
cid_to_gid_map = "".join(cid_to_gid_map).encode("utf-16be")
self.beginStream(cidToGidMapObject.id,
None,
{'Length': len(cid_to_gid_map)})
self.currentstream.write(cid_to_gid_map)
self.endStream()
# ToUnicode CMap
self.beginStream(toUnicodeMapObject.id,
None,
{'Length': unicode_cmap})
self.currentstream.write(unicode_cmap)
self.endStream()
descriptor['MaxWidth'] = max_width
# Write everything out
self.writeObject(cidFontDictObject, cidFontDict)
self.writeObject(type0FontDictObject, type0FontDict)
self.writeObject(fontdescObject, descriptor)
self.writeObject(wObject, w)
return type0FontDictObject
# Beginning of main embedTTF function...
# You are lost in a maze of TrueType tables, all different...
sfnt = font.get_sfnt()
try:
ps_name = sfnt[(1,0,0,6)] # Macintosh scheme
except KeyError:
# Microsoft scheme:
ps_name = sfnt[(3,1,0x0409,6)].decode('utf-16be').encode('ascii','replace')
# (see freetype/ttnameid.h)
ps_name = Name(ps_name)
pclt = font.get_sfnt_table('pclt') \
or { 'capHeight': 0, 'xHeight': 0 }
post = font.get_sfnt_table('post') \
or { 'italicAngle': (0,0) }
ff = font.face_flags
sf = font.style_flags
flags = 0
symbolic = False #ps_name.name in ('Cmsy10', 'Cmmi10', 'Cmex10')
if ff & FIXED_WIDTH: flags |= 1 << 0
if 0: flags |= 1 << 1 # TODO: serif
if symbolic: flags |= 1 << 2
else: flags |= 1 << 5
if sf & ITALIC: flags |= 1 << 6
if 0: flags |= 1 << 16 # TODO: all caps
if 0: flags |= 1 << 17 # TODO: small caps
if 0: flags |= 1 << 18 # TODO: force bold
descriptor = {
'Type' : Name('FontDescriptor'),
'FontName' : ps_name,
'Flags' : flags,
'FontBBox' : [ cvt(x, nearest=False) for x in font.bbox ],
'Ascent' : cvt(font.ascender, nearest=False),
'Descent' : cvt(font.descender, nearest=False),
'CapHeight' : cvt(pclt['capHeight'], nearest=False),
'XHeight' : cvt(pclt['xHeight']),
'ItalicAngle' : post['italicAngle'][1], # ???
'StemV' : 0 # ???
}
# The font subsetting to a Type 3 font does not work for
# OpenType (.otf) that embed a Postscript CFF font, so avoid that --
# save as a (non-subsetted) Type 42 font instead.
if is_opentype_cff_font(filename):
fonttype = 42
warnings.warn(("'%s' can not be subsetted into a Type 3 font. " +
"The entire font will be embedded in the output.") %
os.path.basename(filename))
if fonttype == 3:
return embedTTFType3(font, characters, descriptor)
elif fonttype == 42:
return embedTTFType42(font, characters, descriptor)
def alphaState(self, alpha):
"""Return name of an ExtGState that sets alpha to the given value"""
state = self.alphaStates.get(alpha, None)
if state is not None:
return state[0]
name = Name('A%d' % self.nextAlphaState)
self.nextAlphaState += 1
self.alphaStates[alpha] = \
(name, { 'Type': Name('ExtGState'),
'CA': alpha, 'ca': alpha })
return name
def hatchPattern(self, hatch_style):
pattern = self.hatchPatterns.get(hatch_style, None)
if pattern is not None:
return pattern
name = Name('H%d' % self.nextHatch)
self.nextHatch += 1
self.hatchPatterns[hatch_style] = name
return name
def writeHatches(self):
hatchDict = dict()
sidelen = 72.0
for hatch_style, name in self.hatchPatterns.items():
ob = self.reserveObject('hatch pattern')
hatchDict[name] = ob
res = { 'Procsets':
[ Name(x) for x in "PDF Text ImageB ImageC ImageI".split() ] }
self.beginStream(
ob.id, None,
{ 'Type': Name('Pattern'),
'PatternType': 1, 'PaintType': 1, 'TilingType': 1,
'BBox': [0, 0, sidelen, sidelen],
'XStep': sidelen, 'YStep': sidelen,
'Resources': res })
# lst is a tuple of stroke color, fill color,
# number of - lines, number of / lines,
# number of | lines, number of \ lines
rgb = hatch_style[0]
self.output(rgb[0], rgb[1], rgb[2], Op.setrgb_stroke)
if hatch_style[1] is not None:
rgb = hatch_style[1]
self.output(rgb[0], rgb[1], rgb[2], Op.setrgb_nonstroke,
0, 0, sidelen, sidelen, Op.rectangle,
Op.fill)
self.output(0.1, Op.setlinewidth)
# TODO: We could make this dpi-dependent, but that would be
# an API change
self.output(*self.pathOperations(
Path.hatch(hatch_style[2]),
Affine2D().scale(sidelen)))
self.output(Op.stroke)
self.endStream()
self.writeObject(self.hatchObject, hatchDict)
def imageObject(self, image):
"""Return name of an image XObject representing the given image."""
pair = self.images.get(image, None)
if pair is not None:
return pair[0]
name = Name('I%d' % self.nextImage)
ob = self.reserveObject('image %d' % self.nextImage)
self.nextImage += 1
self.images[image] = (name, ob)
return name
## These two from backend_ps.py
## TODO: alpha (SMask, p. 518 of pdf spec)
def _rgb(self, im):
h,w,s = im.as_rgba_str()
rgba = npy.fromstring(s, npy.uint8)
rgba.shape = (h, w, 4)
rgb = rgba[:,:,:3]
a = rgba[:,:,3:]
return h, w, rgb.tostring(), a.tostring()
def _gray(self, im, rc=0.3, gc=0.59, bc=0.11):
rgbat = im.as_rgba_str()
rgba = npy.fromstring(rgbat[2], npy.uint8)
rgba.shape = (rgbat[0], rgbat[1], 4)
rgba_f = rgba.astype(npy.float32)
r = rgba_f[:,:,0]
g = rgba_f[:,:,1]
b = rgba_f[:,:,2]
gray = (r*rc + g*gc + b*bc).astype(npy.uint8)
return rgbat[0], rgbat[1], gray.tostring()
def writeImages(self):
for img, pair in self.images.items():
img.flipud_out()
if img.is_grayscale:
height, width, data = self._gray(img)
self.beginStream(
pair[1].id,
self.reserveObject('length of image stream'),
{'Type': Name('XObject'), 'Subtype': Name('Image'),
'Width': width, 'Height': height,
'ColorSpace': Name('DeviceGray'), 'BitsPerComponent': 8 })
self.currentstream.write(data) # TODO: predictors (i.e., output png)
self.endStream()
else:
height, width, data, adata = self._rgb(img)
smaskObject = self.reserveObject("smask")
stream = self.beginStream(
smaskObject.id,
self.reserveObject('length of smask stream'),
{'Type': Name('XObject'), 'Subtype': Name('Image'),
'Width': width, 'Height': height,
'ColorSpace': Name('DeviceGray'), 'BitsPerComponent': 8 })
self.currentstream.write(adata) # TODO: predictors (i.e., output png)
self.endStream()
self.beginStream(
pair[1].id,
self.reserveObject('length of image stream'),
{'Type': Name('XObject'), 'Subtype': Name('Image'),
'Width': width, 'Height': height,
'ColorSpace': Name('DeviceRGB'), 'BitsPerComponent': 8,
'SMask': smaskObject})
self.currentstream.write(data) # TODO: predictors (i.e., output png)
self.endStream()
img.flipud_out()
def markerObject(self, path, trans, fillp, lw):
"""Return name of a marker XObject representing the given path."""
pathops = self.pathOperations(path, trans)
key = (tuple(pathops), bool(fillp))
result = self.markers.get(key)
if result is None:
name = Name('M%d' % len(self.markers))
ob = self.reserveObject('marker %d' % len(self.markers))
bbox = path.get_extents(trans)
self.markers[key] = [name, ob, bbox, lw]
else:
if result[-1] < lw:
result[-1] = lw
name = result[0]
return name
def writeMarkers(self):
for (pathops, fillp),(name, ob, bbox, lw) in self.markers.iteritems():
bbox = bbox.padded(lw * 0.5)
self.beginStream(
ob.id, None,
{'Type': Name('XObject'), 'Subtype': Name('Form'),
'BBox': list(bbox.extents) })
self.output(*pathops)
if fillp:
self.output(Op.fill_stroke)
else:
self.output(Op.stroke)
self.endStream()
@staticmethod
def pathOperations(path, transform, clip=None):
cmds = []
last_points = None
for points, code in path.iter_segments(transform, clip=clip):
if code == Path.MOVETO:
cmds.extend(points)
cmds.append(Op.moveto)
elif code == Path.LINETO:
cmds.extend(points)
cmds.append(Op.lineto)
elif code == Path.CURVE3:
points = quad2cubic(*(list(last_points[-2:]) + list(points)))
cmds.extend(points[2:])
cmds.append(Op.curveto)
elif code == Path.CURVE4:
cmds.extend(points)
cmds.append(Op.curveto)
elif code == Path.CLOSEPOLY:
cmds.append(Op.closepath)
last_points = points
return cmds
def writePath(self, path, transform, clip=False):
if clip:
clip = (0.0, 0.0, self.width * 72, self.height * 72)
else:
clip = None
cmds = self.pathOperations(path, transform, clip)
self.output(*cmds)
def reserveObject(self, name=''):
"""Reserve an ID for an indirect object.
The name is used for debugging in case we forget to print out
the object with writeObject.
"""
id = self.nextObject
self.nextObject += 1
self.xrefTable.append([None, 0, name])
return Reference(id)
def recordXref(self, id):
self.xrefTable[id][0] = self.fh.tell()
def writeObject(self, object, contents):
self.recordXref(object.id)
object.write(contents, self)
def writeXref(self):
"""Write out the xref table."""
self.startxref = self.fh.tell()
self.write("xref\n0 %d\n" % self.nextObject)
i = 0
borken = False
for offset, generation, name in self.xrefTable:
if offset is None:
print >>sys.stderr, \
'No offset for object %d (%s)' % (i, name)
borken = True
else:
if name == 'the zero object':
self.write("%010d %05d f \n" % (offset, generation))
else:
self.write("%010d %05d n \n" % (offset, generation))
i += 1
if borken:
raise AssertionError, 'Indirect object does not exist'
def writeTrailer(self):
"""Write out the PDF trailer."""
self.write("trailer\n")
self.write(pdfRepr(
{'Size': self.nextObject,
'Root': self.rootObject,
'Info': self.infoObject }))
# Could add 'ID'
self.write("\nstartxref\n%d\n%%%%EOF\n" % self.startxref)
class RendererPdf(RendererBase):
truetype_font_cache = maxdict(50)
afm_font_cache = maxdict(50)
def __init__(self, file, image_dpi):
RendererBase.__init__(self)
self.file = file
self.gc = self.new_gc()
self.mathtext_parser = MathTextParser("Pdf")
self.image_dpi = image_dpi
self.tex_font_map = None
def finalize(self):
self.file.output(*self.gc.finalize())
def check_gc(self, gc, fillcolor=None):
orig_fill = gc._fillcolor
gc._fillcolor = fillcolor
delta = self.gc.delta(gc)
if delta: self.file.output(*delta)
# Restore gc to avoid unwanted side effects
gc._fillcolor = orig_fill
def tex_font_mapping(self, texfont):
if self.tex_font_map is None:
self.tex_font_map = \
dviread.PsfontsMap(dviread.find_tex_file('pdftex.map'))
return self.tex_font_map[texfont]
def track_characters(self, font, s):
"""Keeps track of which characters are required from
each font."""
if isinstance(font, (str, unicode)):
fname = font
else:
fname = font.fname
realpath, stat_key = get_realpath_and_stat(fname)
used_characters = self.file.used_characters.setdefault(
stat_key, (realpath, set()))
used_characters[1].update([ord(x) for x in s])
def merge_used_characters(self, other):
for stat_key, (realpath, charset) in other.items():
used_characters = self.file.used_characters.setdefault(
stat_key, (realpath, set()))
used_characters[1].update(charset)
def get_image_magnification(self):
return self.image_dpi/72.0
def draw_image(self, x, y, im, bbox, clippath=None, clippath_trans=None):
gc = self.new_gc()
if bbox is not None:
gc.set_clip_rectangle(bbox)
if clippath is not None:
clippath = TransformedPath(clippath, clippath_trans)
gc.set_clip_path(clippath)
self.check_gc(gc)
h, w = im.get_size_out()
h, w = 72.0*h/self.image_dpi, 72.0*w/self.image_dpi
imob = self.file.imageObject(im)
self.file.output(Op.gsave, w, 0, 0, h, x, y, Op.concat_matrix,
imob, Op.use_xobject, Op.grestore)
def draw_path(self, gc, path, transform, rgbFace=None):
self.check_gc(gc, rgbFace)
self.file.writePath(path, transform, rgbFace is None)
self.file.output(self.gc.paint())
def draw_markers(self, gc, marker_path, marker_trans, path, trans, rgbFace=None):
# For simple paths or small numbers of markers, don't bother
# making an XObject
if len(path) * len(marker_path) <= 10:
RendererBase.draw_markers(self, gc, marker_path, marker_trans,
path, trans, rgbFace)
return
self.check_gc(gc, rgbFace)
fillp = rgbFace is not None
output = self.file.output
marker = self.file.markerObject(
marker_path, marker_trans, fillp, self.gc._linewidth)
output(Op.gsave)
lastx, lasty = 0, 0
for vertices, code in path.iter_segments(trans, simplify=False):
if len(vertices):
x, y = vertices[-2:]
dx, dy = x - lastx, y - lasty
output(1, 0, 0, 1, dx, dy, Op.concat_matrix,
marker, Op.use_xobject)
lastx, lasty = x, y
output(Op.grestore)
def _setup_textpos(self, x, y, descent, angle, oldx=0, oldy=0, olddescent=0, oldangle=0):
if angle == oldangle == 0:
self.file.output(x - oldx, (y + descent) - (oldy + olddescent), Op.textpos)
else:
angle = angle / 180.0 * pi
self.file.output( cos(angle), sin(angle),
-sin(angle), cos(angle),
x, y, Op.textmatrix)
self.file.output(0, descent, Op.textpos)
def draw_mathtext(self, gc, x, y, s, prop, angle):
# TODO: fix positioning and encoding
width, height, descent, glyphs, rects, used_characters = \
self.mathtext_parser.parse(s, 72, prop)
self.merge_used_characters(used_characters)
# When using Type 3 fonts, we can't use character codes higher
# than 255, so we use the "Do" command to render those
# instead.
global_fonttype = rcParams['pdf.fonttype']
# Set up a global transformation matrix for the whole math expression
a = angle / 180.0 * pi
self.file.output(Op.gsave)
self.file.output(cos(a), sin(a), -sin(a), cos(a), x, y,
Op.concat_matrix)
self.check_gc(gc, gc._rgb)
self.file.output(Op.begin_text)
prev_font = None, None
oldx, oldy = 0, 0
for ox, oy, fontname, fontsize, num, symbol_name in glyphs:
if is_opentype_cff_font(fontname):
fonttype = 42
else:
fonttype = global_fonttype
if fonttype == 42 or num <= 255:
self._setup_textpos(ox, oy, 0, 0, oldx, oldy)
oldx, oldy = ox, oy
if (fontname, fontsize) != prev_font:
self.file.output(self.file.fontName(fontname), fontsize,
Op.selectfont)
prev_font = fontname, fontsize
self.file.output(self.encode_string(unichr(num), fonttype), Op.show)
self.file.output(Op.end_text)
# If using Type 3 fonts, render all of the multi-byte characters
# as XObjects using the 'Do' command.
if global_fonttype == 3:
for ox, oy, fontname, fontsize, num, symbol_name in glyphs:
if is_opentype_cff_font(fontname):
fonttype = 42
else:
fonttype = global_fonttype
if fonttype == 3 and num > 255:
self.file.fontName(fontname)
self.file.output(Op.gsave,
0.001 * fontsize, 0,
0, 0.001 * fontsize,
ox, oy, Op.concat_matrix)
name = self.file._get_xobject_symbol_name(
fontname, symbol_name)
self.file.output(Name(name), Op.use_xobject)
self.file.output(Op.grestore)
# Draw any horizontal lines in the math layout
for ox, oy, width, height in rects:
self.file.output(Op.gsave, ox, oy, width, height,
Op.rectangle, Op.fill, Op.grestore)
# Pop off the global transformation
self.file.output(Op.grestore)
def draw_tex(self, gc, x, y, s, prop, angle):
texmanager = self.get_texmanager()
fontsize = prop.get_size_in_points()
dvifile = texmanager.make_dvi(s, fontsize)
dvi = dviread.Dvi(dvifile, 72)
page = iter(dvi).next()
dvi.close()
# Gather font information and do some setup for combining
# characters into strings. The variable seq will contain a
# sequence of font and text entries. A font entry is a list
# ['font', name, size] where name is a Name object for the
# font. A text entry is ['text', x, y, glyphs, x+w] where x
# and y are the starting coordinates, w is the width, and
# glyphs is a list; in this phase it will always contain just
# one one-character string, but later it may have longer
# strings interspersed with kern amounts.
oldfont, seq = None, []
for x1, y1, dvifont, glyph, width in page.text:
if dvifont != oldfont:
pdfname = self.file.fontName(dvifont.texname)
if not self.file.dviFontInfo.has_key(dvifont.texname):
psfont = self.tex_font_mapping(dvifont.texname)
self.file.dviFontInfo[dvifont.texname] = Bunch(
fontfile=psfont.filename,
basefont=psfont.psname,
encodingfile=psfont.encoding,
effects=psfont.effects,
dvifont=dvifont)
seq += [['font', pdfname, dvifont.size]]
oldfont = dvifont
seq += [['text', x1, y1, [chr(glyph)], x1+width]]
# Find consecutive text strings with constant y coordinate and
# combine into a sequence of strings and kerns, or just one
# string (if any kerns would be less than 0.1 points).
i, curx, fontsize = 0, 0, None
while i < len(seq)-1:
elt, next = seq[i:i+2]
if elt[0] == 'font':
fontsize = elt[2]
elif elt[0] == next[0] == 'text' and elt[2] == next[2]:
offset = elt[4] - next[1]
if abs(offset) < 0.1:
elt[3][-1] += next[3][0]
elt[4] += next[4]-next[1]
else:
elt[3] += [offset*1000.0/fontsize, next[3][0]]
elt[4] = next[4]
del seq[i+1]
continue
i += 1
# Create a transform to map the dvi contents to the canvas.
mytrans = Affine2D().rotate_deg(angle).translate(x, y)
# Output the text.
self.check_gc(gc, gc._rgb)
self.file.output(Op.begin_text)
curx, cury, oldx, oldy = 0, 0, 0, 0
for elt in seq:
if elt[0] == 'font':
self.file.output(elt[1], elt[2], Op.selectfont)
elif elt[0] == 'text':
curx, cury = mytrans.transform((elt[1], elt[2]))
self._setup_textpos(curx, cury, 0, angle, oldx, oldy)
oldx, oldy = curx, cury
if len(elt[3]) == 1:
self.file.output(elt[3][0], Op.show)
else:
self.file.output(elt[3], Op.showkern)
else:
assert False
self.file.output(Op.end_text)
# Then output the boxes (e.g. variable-length lines of square
# roots).
boxgc = self.new_gc()
boxgc.copy_properties(gc)
boxgc.set_linewidth(0)
pathops = [Path.MOVETO, Path.LINETO, Path.LINETO, Path.LINETO,
Path.CLOSEPOLY]
for x1, y1, h, w in page.boxes:
path = Path([[x1, y1], [x1+w, y1], [x1+w, y1+h], [x1, y1+h],
[0,0]], pathops)
self.draw_path(boxgc, path, mytrans, gc._rgb)
def encode_string(self, s, fonttype):
if fonttype in (1, 3):
return s.encode('cp1252', 'replace')
return s.encode('utf-16be', 'replace')
def draw_text(self, gc, x, y, s, prop, angle, ismath=False):
# TODO: combine consecutive texts into one BT/ET delimited section
# This function is rather complex, since there is no way to
# access characters of a Type 3 font with codes > 255. (Type
# 3 fonts can not have a CIDMap). Therefore, we break the
# string into chunks, where each chunk contains exclusively
# 1-byte or exclusively 2-byte characters, and output each
# chunk a separate command. 1-byte characters use the regular
# text show command (Tj), whereas 2-byte characters use the
# use XObject command (Do). If using Type 42 fonts, all of
# this complication is avoided, but of course, those fonts can
# not be subsetted.
self.check_gc(gc, gc._rgb)
if ismath: return self.draw_mathtext(gc, x, y, s, prop, angle)
fontsize = prop.get_size_in_points()
if rcParams['pdf.use14corefonts']:
font = self._get_font_afm(prop)
l, b, w, h = font.get_str_bbox(s)
descent = -b * fontsize / 1000
fonttype = 1
else:
font = self._get_font_ttf(prop)
self.track_characters(font, s)
font.set_text(s, 0.0, flags=LOAD_NO_HINTING)
descent = font.get_descent() / 64.0
fonttype = rcParams['pdf.fonttype']
# We can't subset all OpenType fonts, so switch to Type 42
# in that case.
if is_opentype_cff_font(font.fname):
fonttype = 42
def check_simple_method(s):
"""Determine if we should use the simple or woven method
to output this text, and chunks the string into 1-byte and
2-byte sections if necessary."""
use_simple_method = True
chunks = []
if not rcParams['pdf.use14corefonts']:
if fonttype == 3 and not isinstance(s, str) and len(s) != 0:
# Break the string into chunks where each chunk is either
# a string of chars <= 255, or a single character > 255.
s = unicode(s)
for c in s:
if ord(c) <= 255:
char_type = 1
else:
char_type = 2
if len(chunks) and chunks[-1][0] == char_type:
chunks[-1][1].append(c)
else:
chunks.append((char_type, [c]))
use_simple_method = (len(chunks) == 1
and chunks[-1][0] == 1)
return use_simple_method, chunks
def draw_text_simple():
"""Outputs text using the simple method."""
self.file.output(Op.begin_text,
self.file.fontName(prop),
fontsize,
Op.selectfont)
self._setup_textpos(x, y, descent, angle)
self.file.output(self.encode_string(s, fonttype), Op.show, Op.end_text)
def draw_text_woven(chunks):
"""Outputs text using the woven method, alternating
between chunks of 1-byte characters and 2-byte characters.
Only used for Type 3 fonts."""
chunks = [(a, ''.join(b)) for a, b in chunks]
cmap = font.get_charmap()
# Do the rotation and global translation as a single matrix
# concatenation up front
self.file.output(Op.gsave)
a = angle / 180.0 * pi
self.file.output(cos(a), sin(a), -sin(a), cos(a), x, y,
Op.concat_matrix)
# Output all the 1-byte characters in a BT/ET group, then
# output all the 2-byte characters.
for mode in (1, 2):
newx = oldx = 0
olddescent = 0
# Output a 1-byte character chunk
if mode == 1:
self.file.output(Op.begin_text,
self.file.fontName(prop),
fontsize,
Op.selectfont)
for chunk_type, chunk in chunks:
if mode == 1 and chunk_type == 1:
self._setup_textpos(newx, 0, descent, 0, oldx, 0, olddescent, 0)
self.file.output(self.encode_string(chunk, fonttype), Op.show)
oldx = newx
olddescent = descent
lastgind = None
for c in chunk:
ccode = ord(c)
gind = cmap.get(ccode)
if gind is not None:
if mode == 2 and chunk_type == 2:
glyph_name = font.get_glyph_name(gind)
self.file.output(Op.gsave)
self.file.output(0.001 * fontsize, 0,
0, 0.001 * fontsize,
newx, 0, Op.concat_matrix)
name = self.file._get_xobject_symbol_name(
font.fname, glyph_name)
self.file.output(Name(name), Op.use_xobject)
self.file.output(Op.grestore)
# Move the pointer based on the character width
# and kerning
glyph = font.load_char(ccode, flags=LOAD_NO_HINTING)
if lastgind is not None:
kern = font.get_kerning(
lastgind, gind, KERNING_UNFITTED)
else:
kern = 0
lastgind = gind
newx += kern/64.0 + glyph.linearHoriAdvance/65536.0
if mode == 1:
self.file.output(Op.end_text)
self.file.output(Op.grestore)
use_simple_method, chunks = check_simple_method(s)
if use_simple_method:
return draw_text_simple()
else:
return draw_text_woven(chunks)
def get_text_width_height_descent(self, s, prop, ismath):
if rcParams['text.usetex']:
texmanager = self.get_texmanager()
fontsize = prop.get_size_in_points()
w, h, d = texmanager.get_text_width_height_descent(s, fontsize,
renderer=self)
return w, h, d
if ismath:
w, h, d, glyphs, rects, used_characters = \
self.mathtext_parser.parse(s, 72, prop)
elif rcParams['pdf.use14corefonts']:
font = self._get_font_afm(prop)
l, b, w, h, d = font.get_str_bbox_and_descent(s)
scale = prop.get_size_in_points()
w *= scale / 1000
h *= scale / 1000
d *= scale / 1000
else:
font = self._get_font_ttf(prop)
font.set_text(s, 0.0, flags=LOAD_NO_HINTING)
w, h = font.get_width_height()
scale = (1.0 / 64.0)
w *= scale
h *= scale
d = font.get_descent()
d *= scale
return w, h, d
def _get_font_afm(self, prop):
key = hash(prop)
font = self.afm_font_cache.get(key)
if font is None:
filename = findfont(prop, fontext='afm')
font = self.afm_font_cache.get(filename)
if font is None:
fh = file(filename)
font = AFM(fh)
self.afm_font_cache[filename] = font
fh.close()
self.afm_font_cache[key] = font
return font
def _get_font_ttf(self, prop):
key = hash(prop)
font = self.truetype_font_cache.get(key)
if font is None:
filename = findfont(prop)
font = self.truetype_font_cache.get(filename)
if font is None:
font = FT2Font(str(filename))
self.truetype_font_cache[filename] = font
self.truetype_font_cache[key] = font
font.clear()
font.set_size(prop.get_size_in_points(), 72)
return font
def flipy(self):
return False
def get_canvas_width_height(self):
return self.file.width / 72.0, self.file.height / 72.0
def new_gc(self):
return GraphicsContextPdf(self.file)
class GraphicsContextPdf(GraphicsContextBase):
def __init__(self, file):
GraphicsContextBase.__init__(self)
self._fillcolor = (0.0, 0.0, 0.0)
self.file = file
self.parent = None
def __repr__(self):
d = dict(self.__dict__)
del d['file']
del d['parent']
return `d`
def _strokep(self):
"""
Predicate: does the path need to be stroked (its outline drawn)?
This tests for the various conditions that disable stroking
the path, in which case it would presumably be filled.
"""
return (self._linewidth > 0 and self._alpha > 0 and
(len(self._rgb) <= 3 or self._rgb[3] != 0.0))
def _fillp(self):
"""
Predicate: does the path need to be filled?
"""
return self._hatch or \
(self._fillcolor is not None and
(len(self._fillcolor) <= 3 or self._fillcolor[3] != 0.0))
def close_and_paint(self):
"""
Return the appropriate pdf operator to close the path and
cause it to be stroked, filled, or both.
"""
if self._strokep():
if self._fillp():
return Op.close_fill_stroke
else:
return Op.close_stroke
else:
if self._fillp():
return Op.fill
else:
return Op.endpath
def paint(self):
"""
Return the appropriate pdf operator to cause the path to be
stroked, filled, or both.
"""
if self._strokep():
if self._fillp():
return Op.fill_stroke
else:
return Op.stroke
else:
if self._fillp():
return Op.fill
else:
return Op.endpath
capstyles = { 'butt': 0, 'round': 1, 'projecting': 2 }
joinstyles = { 'miter': 0, 'round': 1, 'bevel': 2 }
def capstyle_cmd(self, style):
return [self.capstyles[style], Op.setlinecap]
def joinstyle_cmd(self, style):
return [self.joinstyles[style], Op.setlinejoin]
def linewidth_cmd(self, width):
return [width, Op.setlinewidth]
def dash_cmd(self, dashes):
offset, dash = dashes
if dash is None:
dash = []
offset = 0
return [list(dash), offset, Op.setdash]
def alpha_cmd(self, alpha):
name = self.file.alphaState(alpha)
return [name, Op.setgstate]
def hatch_cmd(self, hatch):
if not hatch:
if self._fillcolor is not None:
return self.fillcolor_cmd(self._fillcolor)
else:
return [Name('DeviceRGB'), Op.setcolorspace_nonstroke]
else:
hatch_style = (self._rgb, self._fillcolor, hatch)
name = self.file.hatchPattern(hatch_style)
return [Name('Pattern'), Op.setcolorspace_nonstroke,
name, Op.setcolor_nonstroke]
def rgb_cmd(self, rgb):
if rcParams['pdf.inheritcolor']:
return []
if rgb[0] == rgb[1] == rgb[2]:
return [rgb[0], Op.setgray_stroke]
else:
return list(rgb[:3]) + [Op.setrgb_stroke]
def fillcolor_cmd(self, rgb):
if rgb is None or rcParams['pdf.inheritcolor']:
return []
elif rgb[0] == rgb[1] == rgb[2]:
return [rgb[0], Op.setgray_nonstroke]
else:
return list(rgb[:3]) + [Op.setrgb_nonstroke]
def push(self):
parent = GraphicsContextPdf(self.file)
parent.copy_properties(self)
parent.parent = self.parent
self.parent = parent
return [Op.gsave]
def pop(self):
assert self.parent is not None
self.copy_properties(self.parent)
self.parent = self.parent.parent
return [Op.grestore]
def clip_cmd(self, cliprect, clippath):
"""Set clip rectangle. Calls self.pop() and self.push()."""
cmds = []
# Pop graphics state until we hit the right one or the stack is empty
while (self._cliprect, self._clippath) != (cliprect, clippath) \
and self.parent is not None:
cmds.extend(self.pop())
# Unless we hit the right one, set the clip polygon
if (self._cliprect, self._clippath) != (cliprect, clippath):
cmds.extend(self.push())
if self._cliprect != cliprect:
cmds.extend([cliprect, Op.rectangle, Op.clip, Op.endpath])
if self._clippath != clippath:
path, affine = clippath.get_transformed_path_and_affine()
cmds.extend(
PdfFile.pathOperations(path, affine) +
[Op.clip, Op.endpath])
return cmds
commands = (
(('_cliprect', '_clippath'), clip_cmd), # must come first since may pop
(('_alpha',), alpha_cmd),
(('_capstyle',), capstyle_cmd),
(('_fillcolor',), fillcolor_cmd),
(('_joinstyle',), joinstyle_cmd),
(('_linewidth',), linewidth_cmd),
(('_dashes',), dash_cmd),
(('_rgb',), rgb_cmd),
(('_hatch',), hatch_cmd), # must come after fillcolor and rgb
)
# TODO: _linestyle
def delta(self, other):
"""
Copy properties of other into self and return PDF commands
needed to transform self into other.
"""
cmds = []
for params, cmd in self.commands:
different = False
for p in params:
ours = getattr(self, p)
theirs = getattr(other, p)
try:
different = bool(ours != theirs)
except ValueError:
ours = npy.asarray(ours)
theirs = npy.asarray(theirs)
different = ours.shape != theirs.shape or npy.any(ours != theirs)
if different:
break
if different:
theirs = [getattr(other, p) for p in params]
cmds.extend(cmd(self, *theirs))
for p in params:
setattr(self, p, getattr(other, p))
return cmds
def copy_properties(self, other):
"""
Copy properties of other into self.
"""
GraphicsContextBase.copy_properties(self, other)
self._fillcolor = other._fillcolor
def finalize(self):
"""
Make sure every pushed graphics state is popped.
"""
cmds = []
while self.parent is not None:
cmds.extend(self.pop())
return cmds
########################################################################
#
# The following functions and classes are for pylab and implement
# window/figure managers, etc...
#
########################################################################
def new_figure_manager(num, *args, **kwargs):
"""
Create a new figure manager instance
"""
# if a main-level app must be created, this is the usual place to
# do it -- see backend_wx, backend_wxagg and backend_tkagg for
# examples. Not all GUIs require explicit instantiation of a
# main-level app (egg backend_gtk, backend_gtkagg) for pylab
FigureClass = kwargs.pop('FigureClass', Figure)
thisFig = FigureClass(*args, **kwargs)
canvas = FigureCanvasPdf(thisFig)
manager = FigureManagerPdf(canvas, num)
return manager
class PdfPages(object):
"""
A multi-page PDF file.
Use like this:
# Initialize:
pdf_pages = PdfPages('foo.pdf')
# As many times as you like, create a figure fig, then either:
fig.savefig(pdf_pages, format='pdf') # note the format argument!
# or:
pdf_pages.savefig(fig)
# Once you are done, remember to close the object:
pdf_pages.close()
(In reality PdfPages is a thin wrapper around PdfFile, in order to
avoid confusion when using savefig and forgetting the format
argument.)
"""
__slots__ = ('_file',)
def __init__(self, filename):
"""
Create a new PdfPages object that will be written to the file
named *filename*. The file is opened at once and any older
file with the same name is overwritten.
"""
self._file = PdfFile(filename)
def close(self):
"""
Finalize this object, making the underlying file a complete
PDF file.
"""
self._file.close()
self._file = None
def savefig(self, figure=None, **kwargs):
"""
Save the Figure instance *figure* to this file as a new page.
If *figure* is a number, the figure instance is looked up by
number, and if *figure* is None, the active figure is saved.
Any other keyword arguments are passed to Figure.savefig.
"""
if isinstance(figure, Figure):
figure.savefig(self, format='pdf', **kwargs)
else:
if figure is None:
figureManager = Gcf.get_active()
else:
figureManager = Gcf.get_fig_manager(figure)
if figureManager is None:
raise ValueError, "No such figure: " + `figure`
else:
figureManager.canvas.figure.savefig(self, format='pdf')
class FigureCanvasPdf(FigureCanvasBase):
"""
The canvas the figure renders into. Calls the draw and print fig
methods, creates the renderers, etc...
Public attribute
figure - A Figure instance
"""
def draw(self):
pass
filetypes = {'pdf': 'Portable Document Format'}
def get_default_filetype(self):
return 'pdf'
def print_pdf(self, filename, **kwargs):
image_dpi = kwargs.get('dpi', 72) # dpi to use for images
self.figure.set_dpi(72) # there are 72 pdf points to an inch
width, height = self.figure.get_size_inches()
if isinstance(filename, PdfPages):
file = filename._file
else:
file = PdfFile(filename)
file.newPage(width, height)
_bbox_inches_restore = kwargs.pop("bbox_inches_restore", None)
renderer = MixedModeRenderer(self.figure,
width, height, image_dpi, RendererPdf(file, image_dpi),
bbox_inches_restore=_bbox_inches_restore)
self.figure.draw(renderer)
renderer.finalize()
if isinstance(filename, PdfPages): # finish off this page
file.endStream()
else: # we opened the file above; now finish it off
file.close()
class FigureManagerPdf(FigureManagerBase):
pass
FigureManager = FigureManagerPdf
|