bezier.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » lib » matplotlib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » lib » matplotlib » bezier.py
"""
A module providing some utility functions regarding bezier path manipulation.
"""


import numpy as np
from math import sqrt

from matplotlib.path import Path

from operator import xor


# some functions

def get_intersection(cx1, cy1, cos_t1, sin_t1,
                     cx2, cy2, cos_t2, sin_t2):
    """ return a intersecting point between a line through (cx1, cy1)
    and having angle t1 and a line through (cx2, cy2) and angle t2.
    """

    # line1 => sin_t1 * (x - cx1) - cos_t1 * (y - cy1) = 0.
    # line1 => sin_t1 * x + cos_t1 * y = sin_t1*cx1 - cos_t1*cy1

    line1_rhs = sin_t1 * cx1 - cos_t1 * cy1
    line2_rhs = sin_t2 * cx2 - cos_t2 * cy2

    # rhs matrix
    a, b = sin_t1, -cos_t1
    c, d = sin_t2, -cos_t2

    ad_bc = a*d-b*c
    if ad_bc == 0.:
        raise ValueError("Given lines do not intersect")

    #rhs_inverse
    a_, b_ = d, -b
    c_, d_ = -c, a
    a_, b_, c_, d_ = [k / ad_bc for k in [a_, b_, c_, d_]]

    x = a_* line1_rhs + b_ * line2_rhs
    y = c_* line1_rhs + d_ * line2_rhs

    return x, y



def get_normal_points(cx, cy, cos_t, sin_t, length):
    """
    For a line passing through (*cx*, *cy*) and having a angle *t*,
    return locations of the two points located along its perpendicular line at the distance of *length*.
    """

    if length == 0.:
        return cx, cy, cx, cy

    cos_t1, sin_t1 = sin_t, -cos_t
    cos_t2, sin_t2 = -sin_t, cos_t

    x1, y1 = length*cos_t1 + cx, length*sin_t1 + cy
    x2, y2 = length*cos_t2 + cx, length*sin_t2 + cy

    return x1, y1, x2, y2




## BEZIER routines





# subdividing bezier curve
# http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/Bezier/bezier-sub.html

def _de_casteljau1(beta, t):
    next_beta = beta[:-1] * (1-t) + beta[1:] * t
    return next_beta

def split_de_casteljau(beta, t):
    """split a bezier segment defined by its controlpoints *beta*
    into two separate segment divided at *t* and return their control points.

    """
    beta = np.asarray(beta)
    beta_list = [beta]
    while True:
        beta = _de_casteljau1(beta, t)
        beta_list.append(beta)
        if len(beta) == 1:
            break
    left_beta = [beta[0] for beta in beta_list]
    right_beta = [beta[-1] for beta in reversed(beta_list)]

    return left_beta, right_beta







def find_bezier_t_intersecting_with_closedpath(bezier_point_at_t, inside_closedpath,
                                               t0=0., t1=1., tolerence=0.01):
    """ Find a parameter t0 and t1 of the given bezier path which
    bounds the intersecting points with a provided closed
    path(*inside_closedpath*). Search starts from *t0* and *t1* and it
    uses a simple bisecting algorithm therefore one of the end point
    must be inside the path while the orther doesn't. The search stop
    when |t0-t1| gets smaller than the given tolerence.
    value for

    - bezier_point_at_t : a function which returns x, y coordinates at *t*

    - inside_closedpath : return True if the point is insed the path

    """
    # inside_closedpath : function

    start = bezier_point_at_t(t0)
    end = bezier_point_at_t(t1)

    start_inside = inside_closedpath(start)
    end_inside = inside_closedpath(end)

    if not xor(start_inside, end_inside):
        raise ValueError("the segment does not seemed to intersect with the path")

    while 1:

        # return if the distance is smaller than the tolerence
        if (start[0]-end[0])**2 + (start[1]-end[1])**2 < tolerence**2:
            return t0, t1

        # calculate the middle point
        middle_t = 0.5*(t0+t1)
        middle = bezier_point_at_t(middle_t)
        middle_inside = inside_closedpath(middle)

        if xor(start_inside, middle_inside):
            t1 = middle_t
            end = middle
            end_inside = middle_inside
        else:
            t0 = middle_t
            start = middle
            start_inside = middle_inside





class BezierSegment:
    """
    A simple class of a 2-dimensional bezier segment
    """

    # Highrt order bezier lines can be supported by simplying adding
    # correcponding values.
    _binom_coeff = {1:np.array([1., 1.]),
                    2:np.array([1., 2., 1.]),
                    3:np.array([1., 3., 3., 1.])}

    def __init__(self, control_points):
        """
        *control_points* : location of contol points. It needs have a
         shpae of n * 2, where n is the order of the bezier line. 1<=
         n <= 3 is supported.
        """
        _o = len(control_points)
        self._orders = np.arange(_o)
        _coeff = BezierSegment._binom_coeff[_o - 1]

        _control_points = np.asarray(control_points)
        xx = _control_points[:,0]
        yy = _control_points[:,1]

        self._px = xx * _coeff
        self._py = yy * _coeff

    def point_at_t(self, t):
        "evaluate a point at t"
        one_minus_t_powers = np.power(1.-t, self._orders)[::-1]
        t_powers = np.power(t, self._orders)

        tt = one_minus_t_powers * t_powers
        _x = sum(tt * self._px)
        _y = sum(tt * self._py)

        return _x, _y


def split_bezier_intersecting_with_closedpath(bezier,
                                              inside_closedpath,
                                              tolerence=0.01):

    """
    bezier : control points of the bezier segment
    inside_closedpath : a function which returns true if the point is inside the path
    """

    bz = BezierSegment(bezier)
    bezier_point_at_t = bz.point_at_t

    t0, t1 = find_bezier_t_intersecting_with_closedpath(bezier_point_at_t,
                                                        inside_closedpath,
                                                        tolerence=tolerence)

    _left, _right = split_de_casteljau(bezier, (t0+t1)/2.)
    return _left, _right



def find_r_to_boundary_of_closedpath(inside_closedpath, xy,
                                     cos_t, sin_t,
                                     rmin=0., rmax=1., tolerence=0.01):
    """
    Find a radius r (centered at *xy*) between *rmin* and *rmax* at
    which it intersect with the path.

    inside_closedpath : function
    cx, cy : center
    cos_t, sin_t : cosine and sine for the angle
    rmin, rmax :
    """

    cx, cy = xy
    def _f(r):
        return cos_t*r + cx, sin_t*r + cy

    find_bezier_t_intersecting_with_closedpath(_f, inside_closedpath,
                                               t0=rmin, t1=rmax, tolerence=tolerence)



## matplotlib specific

def split_path_inout(path, inside, tolerence=0.01, reorder_inout=False):
    """ divide a path into two segment at the point where inside(x, y)
    becomes False.
    """

    path_iter = path.iter_segments()

    ctl_points, command = path_iter.next()
    begin_inside = inside(ctl_points[-2:]) # true if begin point is inside

    bezier_path = None
    ctl_points_old = ctl_points

    concat = np.concatenate

    iold=0
    i = 1

    for ctl_points, command in path_iter:
        iold=i
        i += len(ctl_points)/2
        if inside(ctl_points[-2:]) != begin_inside:
            bezier_path = concat([ctl_points_old[-2:], ctl_points])
            break

        ctl_points_old = ctl_points

    if bezier_path is None:
        raise ValueError("The path does not seem to intersect with the patch")

    bp = zip(bezier_path[::2], bezier_path[1::2])
    left, right = split_bezier_intersecting_with_closedpath(bp,
                                                            inside,
                                                            tolerence)
    if len(left) == 2:
        codes_left = [Path.LINETO]
        codes_right = [Path.MOVETO, Path.LINETO]
    elif len(left) == 3:
        codes_left = [Path.CURVE3, Path.CURVE3]
        codes_right = [Path.MOVETO, Path.CURVE3, Path.CURVE3]
    elif len(left) == 4:
        codes_left = [Path.CURVE4, Path.CURVE4, Path.CURVE4]
        codes_right = [Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]
    else:
        raise ValueError()

    verts_left = left[1:]
    verts_right = right[:]

    #i += 1

    if path.codes is None:
        path_in = Path(concat([path.vertices[:i], verts_left]))
        path_out = Path(concat([verts_right, path.vertices[i:]]))

    else:
        path_in = Path(concat([path.vertices[:iold], verts_left]),
                       concat([path.codes[:iold], codes_left]))

        path_out = Path(concat([verts_right, path.vertices[i:]]),
                        concat([codes_right, path.codes[i:]]))

    if reorder_inout and begin_inside == False:
        path_in, path_out = path_out, path_in

    return path_in, path_out





def inside_circle(cx, cy, r):
    r2 = r**2
    def _f(xy):
        x, y = xy
        return (x-cx)**2 + (y-cy)**2 < r2
    return _f



# quadratic bezier lines

def get_cos_sin(x0, y0, x1, y1):
    dx, dy = x1-x0, y1-y0
    d = (dx*dx + dy*dy)**.5
    return dx/d, dy/d


def get_parallels(bezier2, width):
    """
    Given the quadraitc bezier control points *bezier2*, returns
    control points of quadrativ bezier lines roughly parralel to given
    one separated by *width*.
    """

    # The parallel bezier lines constructed by following ways.
    #  c1 and  c2 are contol points representing the begin and end of the bezier line.
    #  cm is the middle point
    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c2x, c2y = bezier2[2]

    # t1 and t2 is the anlge between c1 and cm, cm, c2.
    # They are also a angle of the tangential line of the path at c1 and c2
    cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
    cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c2x, c2y)

    # find c1_left, c1_right which are located along the lines
    # throught c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c2_left and
    # c2_right with respect to c2.
    c1x_left, c1y_left, c1x_right, c1y_right = \
              get_normal_points(c1x, c1y, cos_t1, sin_t1, width)
    c2x_left, c2y_left, c2x_right, c2y_right = \
              get_normal_points(c2x, c2y, cos_t2, sin_t2, width)

    # find cm_left which is the intersectng point of a line through
    # c1_left with angle t1 and a line throught c2_left with angle
    # t2. Same with cm_right.
    cmx_left, cmy_left = get_intersection(c1x_left, c1y_left, cos_t1, sin_t1,
                                        c2x_left, c2y_left, cos_t2, sin_t2)

    cmx_right, cmy_right = get_intersection(c1x_right, c1y_right, cos_t1, sin_t1,
                                          c2x_right, c2y_right, cos_t2, sin_t2)

    # the parralel bezier lines are created with control points of
    # [c1_left, cm_left, c2_left] and [c1_right, cm_right, c2_right]
    path_left = [(c1x_left, c1y_left), (cmx_left, cmy_left), (c2x_left, c2y_left)]
    path_right = [(c1x_right, c1y_right), (cmx_right, cmy_right), (c2x_right, c2y_right)]

    return path_left, path_right



def make_wedged_bezier2(bezier2, length, shrink_factor=0.5):
    """
    Being similar to get_parallels, returns
    control points of two quadrativ bezier lines having a width roughly parralel to given
    one separated by *width*.
    """

    xx1, yy1 = bezier2[2]
    xx2, yy2 = bezier2[1]
    xx3, yy3 = bezier2[0]

    cx, cy = xx3, yy3
    x0, y0 = xx2, yy2

    dist = sqrt((x0-cx)**2 + (y0-cy)**2)
    cos_t, sin_t = (x0-cx)/dist, (y0-cy)/dist,

    x1, y1, x2, y2 = get_normal_points(cx, cy, cos_t, sin_t, length)

    xx12, yy12 = (xx1+xx2)/2., (yy1+yy2)/2.,
    xx23, yy23 = (xx2+xx3)/2., (yy2+yy3)/2.,

    dist = sqrt((xx12-xx23)**2 + (yy12-yy23)**2)
    cos_t, sin_t = (xx12-xx23)/dist, (yy12-yy23)/dist,

    xm1, ym1, xm2, ym2 = get_normal_points(xx2, yy2, cos_t, sin_t, length*shrink_factor)

    l_plus = [(x1, y1), (xm1, ym1), (xx1, yy1)]
    l_minus = [(x2, y2), (xm2, ym2), (xx1, yy1)]

    return l_plus, l_minus


def find_control_points(c1x, c1y, mmx, mmy, c2x, c2y):
    """ Find control points of the bezier line throught c1, mm, c2. We
    simply assume that c1, mm, c2 which have parameteric value 0, 0.5, and 1.
    """

    cmx = .5 * (4*mmx - (c1x + c2x))
    cmy = .5 * (4*mmy - (c1y + c2y))

    return [(c1x, c1y), (cmx, cmy), (c2x, c2y)]


def make_wedged_bezier2(bezier2, width, w1=1., wm=0.5, w2=0.):
    """
    Being similar to get_parallels, returns
    control points of two quadrativ bezier lines having a width roughly parralel to given
    one separated by *width*.
    """

    # c1, cm, c2
    c1x, c1y = bezier2[0]
    cmx, cmy = bezier2[1]
    c3x, c3y = bezier2[2]


    # t1 and t2 is the anlge between c1 and cm, cm, c3.
    # They are also a angle of the tangential line of the path at c1 and c3
    cos_t1, sin_t1 = get_cos_sin(c1x, c1y, cmx, cmy)
    cos_t2, sin_t2 = get_cos_sin(cmx, cmy, c3x, c3y)

    # find c1_left, c1_right which are located along the lines
    # throught c1 and perpendicular to the tangential lines of the
    # bezier path at a distance of width. Same thing for c3_left and
    # c3_right with respect to c3.
    c1x_left, c1y_left, c1x_right, c1y_right = \
              get_normal_points(c1x, c1y, cos_t1, sin_t1, width*w1)
    c3x_left, c3y_left, c3x_right, c3y_right = \
              get_normal_points(c3x, c3y, cos_t2, sin_t2, width*w2)




    # find c12, c23 and c123 which are middle points of c1-cm, cm-c3 and c12-c23
    c12x, c12y = (c1x+cmx)*.5, (c1y+cmy)*.5
    c23x, c23y = (cmx+c3x)*.5, (cmy+c3y)*.5
    c123x, c123y = (c12x+c23x)*.5, (c12y+c23y)*.5

    # tangential angle of c123 (angle between c12 and c23)
    cos_t123, sin_t123 = get_cos_sin(c12x, c12y, c23x, c23y)

    c123x_left, c123y_left, c123x_right, c123y_right = \
                get_normal_points(c123x, c123y, cos_t123, sin_t123, width*wm)


    path_left = find_control_points(c1x_left, c1y_left,
                                    c123x_left, c123y_left,
                                    c3x_left, c3y_left)
    path_right = find_control_points(c1x_right, c1y_right,
                                     c123x_right, c123y_right,
                                     c3x_right, c3y_right)

    return path_left, path_right




def make_path_regular(p):
    """
    fill in the codes if None.
    """
    c = p.codes
    if c is None:
        c = np.empty(p.vertices.shape[:1], "i")
        c.fill(Path.LINETO)
        c[0] = Path.MOVETO

        return Path(p.vertices, c)
    else:
        return p

def concatenate_paths(paths):
    """
    concatenate list of paths into a single path.
    """

    vertices = []
    codes = []
    for p in paths:
        p = make_path_regular(p)
        vertices.append(p.vertices)
        codes.append(p.codes)

    _path = Path(np.concatenate(vertices),
                 np.concatenate(codes))
    return _path



if 0:
    path = Path([(0, 0), (1, 0), (2, 2)],
                [Path.MOVETO, Path.CURVE3, Path.CURVE3])
    left, right = divide_path_inout(path, inside)
    clf()
    ax = gca()



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.