dates.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » lib » matplotlib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » lib » matplotlib » dates.py
#!/usr/bin/env python
"""
Matplotlib provides sophisticated date plotting capabilities, standing
on the shoulders of python :mod:`datetime`, the add-on modules
:mod:`pytz` and :mod:`dateutils`.  :class:`datetime` objects are
converted to floating point numbers which represent the number of days
since 0001-01-01 UTC.  The helper functions :func:`date2num`,
:func:`num2date` and :func:`drange` are used to facilitate easy
conversion to and from :mod:`datetime` and numeric ranges.

A wide range of specific and general purpose date tick locators and
formatters are provided in this module.  See
:mod:`matplotlib.ticker` for general information on tick locators
and formatters.  These are described below.

All the matplotlib date converters, tickers and formatters are
timezone aware, and the default timezone is given by the timezone
parameter in your :file:`matplotlibrc` file.  If you leave out a
:class:`tz` timezone instance, the default from your rc file will be
assumed.  If you want to use a custom time zone, pass a
:class:`pytz.timezone` instance with the tz keyword argument to
:func:`num2date`, :func:`plot_date`, and any custom date tickers or
locators you create.  See `pytz <http://pytz.sourceforge.net>`_ for
information on :mod:`pytz` and timezone handling.

The `dateutil module <http://labix.org/python-dateutil>`_ provides
additional code to handle date ticking, making it easy to place ticks
on any kinds of dates.  See examples below.

Date tickers
------------

Most of the date tickers can locate single or multiple values.  For
example::

    # tick on mondays every week
    loc = WeekdayLocator(byweekday=MO, tz=tz)

    # tick on mondays and saturdays
    loc = WeekdayLocator(byweekday=(MO, SA))

In addition, most of the constructors take an interval argument::

    # tick on mondays every second week
    loc = WeekdayLocator(byweekday=MO, interval=2)

The rrule locator allows completely general date ticking::

    # tick every 5th easter
    rule = rrulewrapper(YEARLY, byeaster=1, interval=5)
    loc = RRuleLocator(rule)

Here are all the date tickers:

    * :class:`MinuteLocator`: locate minutes

    * :class:`HourLocator`: locate hours

    * :class:`DayLocator`: locate specifed days of the month

    * :class:`WeekdayLocator`: Locate days of the week, eg MO, TU

    * :class:`MonthLocator`: locate months, eg 7 for july

    * :class:`YearLocator`: locate years that are multiples of base

    * :class:`RRuleLocator`: locate using a
      :class:`matplotlib.dates.rrulewrapper`.  The
      :class:`rrulewrapper` is a simple wrapper around a
      :class:`dateutils.rrule` (`dateutil
      <https://moin.conectiva.com.br/DateUtil>`_) which allow almost
      arbitrary date tick specifications.  See `rrule example
      <../examples/pylab_examples/date_demo_rrule.html>`_.

Date formatters
---------------

Here all all the date formatters:

    * :class:`DateFormatter`: use :func:`strftime` format strings

    * :class:`IndexDateFormatter`: date plots with implicit *x*
      indexing.
"""
import re, time, math, datetime

import pytz

# compatability for 2008c and older versions
try:
   import pytz.zoneinfo
except ImportError:
   pytz.zoneinfo = pytz.tzinfo
   pytz.zoneinfo.UTC = pytz.UTC

import matplotlib
import numpy as np

import matplotlib.units as units
import matplotlib.cbook as cbook
import matplotlib.ticker as ticker

from pytz import timezone
from dateutil.rrule import rrule,MO,TU,WE,TH,FR,SA,SU,YEARLY,\
     MONTHLY, WEEKLY, DAILY, HOURLY, MINUTELY, SECONDLY
from dateutil.relativedelta import relativedelta
import dateutil.parser


__all__ = ( 'date2num', 'num2date', 'drange', 'epoch2num',
            'num2epoch', 'mx2num', 'DateFormatter',
            'IndexDateFormatter', 'DateLocator', 'RRuleLocator',
            'YearLocator', 'MonthLocator', 'WeekdayLocator',
            'DayLocator', 'HourLocator', 'MinuteLocator',
            'SecondLocator', 'rrule', 'MO', 'TU', 'WE', 'TH', 'FR',
            'SA', 'SU', 'YEARLY', 'MONTHLY', 'WEEKLY', 'DAILY',
            'HOURLY', 'MINUTELY', 'SECONDLY', 'relativedelta',
            'seconds', 'minutes', 'hours', 'weeks')



UTC = pytz.timezone('UTC')

def _get_rc_timezone():
    s = matplotlib.rcParams['timezone']
    return pytz.timezone(s)


HOURS_PER_DAY = 24.
MINUTES_PER_DAY  = 60.*HOURS_PER_DAY
SECONDS_PER_DAY =  60.*MINUTES_PER_DAY
MUSECONDS_PER_DAY = 1e6*SECONDS_PER_DAY
SEC_PER_MIN = 60
SEC_PER_HOUR = 3600
SEC_PER_DAY = SEC_PER_HOUR * 24
SEC_PER_WEEK = SEC_PER_DAY * 7
MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY = (
    MO, TU, WE, TH, FR, SA, SU)
WEEKDAYS = (MONDAY, TUESDAY, WEDNESDAY, THURSDAY, FRIDAY, SATURDAY, SUNDAY)




def _to_ordinalf(dt):
    """
    Convert :mod:`datetime` to the Gregorian date as UTC float days,
    preserving hours, minutes, seconds and microseconds.  Return value
    is a :func:`float`.
    """

    if hasattr(dt, 'tzinfo') and dt.tzinfo is not None:
        delta = dt.tzinfo.utcoffset(dt)
        if delta is not None:
            dt -= delta

    base =  float(dt.toordinal())
    if hasattr(dt, 'hour'):
        base += (dt.hour/HOURS_PER_DAY + dt.minute/MINUTES_PER_DAY +
                 dt.second/SECONDS_PER_DAY + dt.microsecond/MUSECONDS_PER_DAY
                 )
    return base

def _from_ordinalf(x, tz=None):
    """
    Convert Gregorian float of the date, preserving hours, minutes,
    seconds and microseconds.  Return value is a :class:`datetime`.
    """
    if tz is None: tz = _get_rc_timezone()
    ix = int(x)
    dt = datetime.datetime.fromordinal(ix)
    remainder = float(x) - ix
    hour, remainder = divmod(24*remainder, 1)
    minute, remainder = divmod(60*remainder, 1)
    second, remainder = divmod(60*remainder, 1)
    microsecond = int(1e6*remainder)
    if microsecond<10: microsecond=0 # compensate for rounding errors
    dt = datetime.datetime(
        dt.year, dt.month, dt.day, int(hour), int(minute), int(second),
        microsecond, tzinfo=UTC).astimezone(tz)

    if microsecond>999990:  # compensate for rounding errors
        dt += datetime.timedelta(microseconds=1e6-microsecond)

    return dt

class strpdate2num:
    """
    Use this class to parse date strings to matplotlib datenums when
    you know the date format string of the date you are parsing.  See
    :file:`examples/load_demo.py`.
    """
    def __init__(self, fmt):
        """ fmt: any valid strptime format is supported """
        self.fmt = fmt

    def __call__(self, s):
        """s : string to be converted
           return value: a date2num float
        """
        return date2num(datetime.datetime(*time.strptime(s, self.fmt)[:6]))

def datestr2num(d):
    """
    Convert a date string to a datenum using
    :func:`dateutil.parser.parse`.  *d* can be a single string or a
    sequence of strings.
    """
    if cbook.is_string_like(d):
        dt = dateutil.parser.parse(d)
        return date2num(dt)
    else:
        return date2num([dateutil.parser.parse(s) for s in d])


def date2num(d):
    """
    *d* is either a :class:`datetime` instance or a sequence of datetimes.

    Return value is a floating point number (or sequence of floats)
    which gives number of days (fraction part represents hours,
    minutes, seconds) since 0001-01-01 00:00:00 UTC.
    """
    if not cbook.iterable(d): return _to_ordinalf(d)
    else: return np.asarray([_to_ordinalf(val) for val in d])


def julian2num(j):
    'Convert a Julian date (or sequence) to a matplotlib date (or sequence).'
    if cbook.iterable(j): j = np.asarray(j)
    return j + 1721425.5

def num2julian(n):
    'Convert a matplotlib date (or sequence) to a Julian date (or sequence).'
    if cbook.iterable(n): n = np.asarray(n)
    return n - 1721425.5

def num2date(x, tz=None):
    """
    *x* is a float value which gives number of days (fraction part
    represents hours, minutes, seconds) since 0001-01-01 00:00:00 UTC.

    Return value is a :class:`datetime` instance in timezone *tz* (default to
    rcparams TZ value).

    If *x* is a sequence, a sequence of :class:`datetime` objects will
    be returned.
    """
    if tz is None: tz = _get_rc_timezone()
    if not cbook.iterable(x): return _from_ordinalf(x, tz)
    else: return [_from_ordinalf(val, tz) for val in x]

def drange(dstart, dend, delta):
    """
    Return a date range as float Gregorian ordinals.  *dstart* and
    *dend* are :class:`datetime` instances.  *delta* is a
    :class:`datetime.timedelta` instance.
    """
    step = (delta.days + delta.seconds/SECONDS_PER_DAY +
            delta.microseconds/MUSECONDS_PER_DAY)
    f1 = _to_ordinalf(dstart)
    f2 = _to_ordinalf(dend)
    return np.arange(f1, f2, step)



### date tickers and formatters ###



class DateFormatter(ticker.Formatter):
    """
    Tick location is seconds since the epoch.  Use a :func:`strftime`
    format string.

    Python only supports :mod:`datetime` :func:`strftime` formatting
    for years greater than 1900.  Thanks to Andrew Dalke, Dalke
    Scientific Software who contributed the :func:`strftime` code
    below to include dates earlier than this year.
    """

    illegal_s = re.compile(r"((^|[^%])(%%)*%s)")

    def __init__(self, fmt, tz=None):
        """
        *fmt* is an :func:`strftime` format string; *tz* is the
         :class:`tzinfo` instance.
        """
        if tz is None: tz = _get_rc_timezone()
        self.fmt = fmt
        self.tz = tz

    def __call__(self, x, pos=0):
        dt = num2date(x, self.tz)
        return self.strftime(dt, self.fmt)

    def set_tzinfo(self, tz):
        self.tz = tz

    def _findall(self, text, substr):
        # Also finds overlaps
        sites = []
        i = 0
        while 1:
            j = text.find(substr, i)
            if j == -1:
                break
            sites.append(j)
            i=j+1
        return sites

    # Dalke: I hope I did this math right.  Every 28 years the
    # calendar repeats, except through century leap years excepting
    # the 400 year leap years.  But only if you're using the Gregorian
    # calendar.

    def strftime(self, dt, fmt):
        fmt = self.illegal_s.sub(r"\1", fmt)
        fmt = fmt.replace("%s", "s")
        if dt.year > 1900:
            return cbook.unicode_safe(dt.strftime(fmt))

        year = dt.year
        # For every non-leap year century, advance by
        # 6 years to get into the 28-year repeat cycle
        delta = 2000 - year
        off = 6*(delta // 100 + delta // 400)
        year = year + off

        # Move to around the year 2000
        year = year + ((2000 - year)//28)*28
        timetuple = dt.timetuple()
        s1 = time.strftime(fmt, (year,) + timetuple[1:])
        sites1 = self._findall(s1, str(year))

        s2 = time.strftime(fmt, (year+28,) + timetuple[1:])
        sites2 = self._findall(s2, str(year+28))

        sites = []
        for site in sites1:
            if site in sites2:
                sites.append(site)

        s = s1
        syear = "%4d" % (dt.year,)
        for site in sites:
            s = s[:site] + syear + s[site+4:]

        return cbook.unicode_safe(s)



class IndexDateFormatter(ticker.Formatter):
    """
    Use with :class:`~matplotlib.ticker.IndexLocator` to cycle format
    strings by index.
    """
    def __init__(self, t, fmt, tz=None):
        """
        *t* is a sequence of dates (floating point days).  *fmt* is a
        :func:`strftime` format string.
        """
        if tz is None: tz = _get_rc_timezone()
        self.t = t
        self.fmt = fmt
        self.tz = tz

    def __call__(self, x, pos=0):
        'Return the label for time *x* at position *pos*'
        ind = int(round(x))
        if ind>=len(self.t) or ind<=0: return ''

        dt = num2date(self.t[ind], self.tz)

        return cbook.unicode_safe(dt.strftime(self.fmt))


class AutoDateFormatter(ticker.Formatter):
    """
    This class attempts to figure out the best format to use.  This is
    most useful when used with the :class:`AutoDateLocator`.
    """

    # This can be improved by providing some user-level direction on
    # how to choose the best format (precedence, etc...)

    # Perhaps a 'struct' that has a field for each time-type where a
    # zero would indicate "don't show" and a number would indicate
    # "show" with some sort of priority.  Same priorities could mean
    # show all with the same priority.

    # Or more simply, perhaps just a format string for each
    # possibility...

    def __init__(self, locator, tz=None):
        self._locator = locator
        self._formatter = DateFormatter("%b %d %Y %H:%M:%S %Z", tz)
        self._tz = tz

    def __call__(self, x, pos=0):
        scale = float( self._locator._get_unit() )

        if ( scale == 365.0 ):
            self._formatter = DateFormatter("%Y", self._tz)
        elif ( scale == 30.0 ):
            self._formatter = DateFormatter("%b %Y", self._tz)
        elif ( (scale == 1.0) or (scale == 7.0) ):
            self._formatter = DateFormatter("%b %d %Y", self._tz)
        elif ( scale == (1.0/24.0) ):
            self._formatter = DateFormatter("%H:%M:%S %Z", self._tz)
        elif ( scale == (1.0/(24*60)) ):
            self._formatter = DateFormatter("%H:%M:%S %Z", self._tz)
        elif ( scale == (1.0/(24*3600)) ):
            self._formatter = DateFormatter("%H:%M:%S %Z", self._tz)
        else:
            self._formatter = DateFormatter("%b %d %Y %H:%M:%S %Z", self._tz)

        return self._formatter(x, pos)


class rrulewrapper:

    def __init__(self, freq, **kwargs):
        self._construct = kwargs.copy()
        self._construct["freq"] = freq
        self._rrule = rrule(**self._construct)

    def set(self, **kwargs):
        self._construct.update(kwargs)
        self._rrule = rrule(**self._construct)

    def __getattr__(self, name):
        if name in self.__dict__:
            return self.__dict__[name]
        return getattr(self._rrule, name)

class DateLocator(ticker.Locator):
    hms0d = {'byhour':0, 'byminute':0,'bysecond':0}
    def __init__(self, tz=None):
        """
        *tz* is a :class:`tzinfo` instance.
        """
        if tz is None: tz = _get_rc_timezone()
        self.tz = tz

    def set_tzinfo(self, tz):
        self.tz = tz

    def datalim_to_dt(self):
        dmin, dmax = self.axis.get_data_interval()
        return num2date(dmin, self.tz), num2date(dmax, self.tz)

    def viewlim_to_dt(self):
        vmin, vmax = self.axis.get_view_interval()
        return num2date(vmin, self.tz), num2date(vmax, self.tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1

    def nonsingular(self, vmin, vmax):
        unit = self._get_unit()
        vmin -= 2*unit
        vmax += 2*unit
        return vmin, vmax

class RRuleLocator(DateLocator):
    # use the dateutil rrule instance

    def __init__(self, o, tz=None):
        DateLocator.__init__(self, tz)
        self.rule = o

    def __call__(self):
        # if no data have been set, this will tank with a ValueError
        try: dmin, dmax = self.viewlim_to_dt()
        except ValueError: return []

        if dmin>dmax:
            dmax, dmin = dmin, dmax
        delta = relativedelta(dmax, dmin)

        # We need to cap at the endpoints of valid datetime
        try:
            start = dmin - delta
        except ValueError:
            start = _from_ordinalf( 1.0 )

        try:
            stop = dmax + delta
        except ValueError:
            # The magic number!
            stop = _from_ordinalf( 3652059.9999999 )

        self.rule.set(dtstart=start, until=stop)
        dates = self.rule.between(dmin, dmax, True)
        return date2num(dates)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        freq = self.rule._rrule._freq
        if ( freq == YEARLY ):
            return 365
        elif ( freq == MONTHLY ):
            return 30
        elif ( freq == WEEKLY ):
            return 7
        elif ( freq == DAILY ):
            return 1
        elif ( freq == HOURLY ):
            return (1.0/24.0)
        elif ( freq == MINUTELY ):
            return (1.0/(24*60))
        elif ( freq == SECONDLY ):
            return (1.0/(24*3600))
        else:
            # error
            return -1   #or should this just return '1'?

    def autoscale(self):
        """
        Set the view limits to include the data range.
        """
        dmin, dmax = self.datalim_to_dt()
        if dmin>dmax:
            dmax, dmin = dmin, dmax

        delta = relativedelta(dmax, dmin)

        # We need to cap at the endpoints of valid datetime
        try:
            start = dmin - delta
        except ValueError:
            start = _from_ordinalf( 1.0 )

        try:
            stop = dmax + delta
        except ValueError:
            # The magic number!
            stop = _from_ordinalf( 3652059.9999999 )

        self.rule.set(dtstart=start, until=stop)
        dmin, dmax = self.datalim_to_dt()


        vmin = self.rule.before(dmin, True)
        if not vmin: vmin=dmin

        vmax = self.rule.after(dmax, True)
        if not vmax: vmax=dmax

        vmin = date2num(vmin)
        vmax = date2num(vmax)

        return self.nonsingular(vmin, vmax)


class AutoDateLocator(DateLocator):
    """
    On autoscale, this class picks the best
    :class:`MultipleDateLocator` to set the view limits and the tick
    locations.
    """
    def __init__(self, tz=None):
        DateLocator.__init__(self, tz)
        self._locator = YearLocator()
        self._freq = YEARLY

    def __call__(self):
        'Return the locations of the ticks'
        self.refresh()
        return self._locator()

    def set_axis(self, axis):
        DateLocator.set_axis(self, axis)
        self._locator.set_axis(axis)

    def refresh(self):
        'Refresh internal information based on current limits.'
        dmin, dmax = self.viewlim_to_dt()
        self._locator = self.get_locator(dmin, dmax)

    def _get_unit(self):
        if ( self._freq == YEARLY ):
            return 365.0
        elif ( self._freq == MONTHLY ):
            return 30.0
        elif ( self._freq == WEEKLY ):
            return 7.0
        elif ( self._freq == DAILY ):
            return 1.0
        elif ( self._freq == HOURLY ):
            return 1.0/24
        elif ( self._freq == MINUTELY ):
            return 1.0/(24*60)
        elif ( self._freq == SECONDLY ):
            return 1.0/(24*3600)
        else:
            # error
            return -1

    def autoscale(self):
        'Try to choose the view limits intelligently.'
        dmin, dmax = self.datalim_to_dt()
        self._locator = self.get_locator(dmin, dmax)
        return self._locator.autoscale()

    def get_locator(self, dmin, dmax):
        'Pick the best locator based on a distance.'

        delta = relativedelta(dmax, dmin)

        numYears = (delta.years * 1.0)
        numMonths = (numYears * 12.0) + delta.months
        numDays = (numMonths * 31.0) + delta.days
        numHours = (numDays * 24.0) + delta.hours
        numMinutes = (numHours * 60.0) + delta.minutes
        numSeconds = (numMinutes * 60.0) + delta.seconds

        numticks = 5

        # self._freq = YEARLY
        interval = 1
        bymonth = 1
        bymonthday = 1
        byhour = 0
        byminute = 0
        bysecond = 0

        if ( numYears >= numticks ):
            self._freq = YEARLY
        elif ( numMonths >= numticks ):
            self._freq = MONTHLY
            bymonth = range(1, 13)
            if ( (0 <= numMonths) and (numMonths <= 14) ):
                interval = 1      # show every month
            elif ( (15 <= numMonths) and (numMonths <= 29) ):
                interval = 3      # show every 3 months
            elif ( (30 <= numMonths) and (numMonths <= 44) ):
                interval = 4      # show every 4 months
            else:   # 45 <= numMonths <= 59
                interval = 6      # show every 6 months
        elif ( numDays >= numticks ):
            self._freq = DAILY
            bymonth = None
            bymonthday = range(1, 32)
            if ( (0 <= numDays) and (numDays <= 9) ):
                interval = 1      # show every day
            elif ( (10 <= numDays) and (numDays <= 19) ):
                interval = 2      # show every 2 days
            elif ( (20 <= numDays) and (numDays <= 49) ):
                interval = 3      # show every 3 days
            elif ( (50 <= numDays) and (numDays <= 99) ):
                interval = 7      # show every 1 week
            else:   # 100 <= numDays <= ~150
                interval = 14     # show every 2 weeks
        elif ( numHours >= numticks ):
            self._freq = HOURLY
            bymonth = None
            bymonthday = None
            byhour = range(0, 24)      # show every hour
            if ( (0 <= numHours) and (numHours <= 14) ):
                interval = 1      # show every hour
            elif ( (15 <= numHours) and (numHours <= 30) ):
                interval = 2      # show every 2 hours
            elif ( (30 <= numHours) and (numHours <= 45) ):
                interval = 3      # show every 3 hours
            elif ( (45 <= numHours) and (numHours <= 68) ):
                interval = 4      # show every 4 hours
            elif ( (68 <= numHours) and (numHours <= 90) ):
                interval = 6      # show every 6 hours
            else:   # 90 <= numHours <= 120
                interval = 12     # show every 12 hours
        elif ( numMinutes >= numticks ):
            self._freq = MINUTELY
            bymonth = None
            bymonthday = None
            byhour = None
            byminute = range(0, 60)
            if ( numMinutes > (10.0 * numticks) ):
                interval = 10
            # end if
        elif ( numSeconds >= numticks ):
            self._freq = SECONDLY
            bymonth = None
            bymonthday = None
            byhour = None
            byminute = None
            bysecond = range(0, 60)
            if ( numSeconds > (10.0 * numticks) ):
                interval = 10
            # end if
        else:
            # do what?
            #   microseconds as floats, but floats from what reference point?
            pass


        rrule = rrulewrapper( self._freq, interval=interval,          \
                              dtstart=dmin, until=dmax,               \
                              bymonth=bymonth, bymonthday=bymonthday, \
                              byhour=byhour, byminute = byminute,     \
                              bysecond=bysecond )

        locator = RRuleLocator(rrule, self.tz)
        locator.set_axis(self.axis)

        locator.set_view_interval(*self.axis.get_view_interval())
        locator.set_data_interval(*self.axis.get_data_interval())
        return locator


class YearLocator(DateLocator):
    """
    Make ticks on a given day of each year that is a multiple of base.

    Examples::

      # Tick every year on Jan 1st
      locator = YearLocator()

      # Tick every 5 years on July 4th
      locator = YearLocator(5, month=7, day=4)
    """
    def __init__(self, base=1, month=1, day=1, tz=None):
        """
        Mark years that are multiple of base on a given month and day
        (default jan 1).
        """
        DateLocator.__init__(self, tz)
        self.base = ticker.Base(base)
        self.replaced = { 'month'  : month,
                          'day'    : day,
                          'hour'   : 0,
                          'minute' : 0,
                          'second' : 0,
                          'tzinfo' : tz
                          }


    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 365

    def __call__(self):
        dmin, dmax = self.viewlim_to_dt()
        ymin = self.base.le(dmin.year)
        ymax = self.base.ge(dmax.year)


        ticks = [dmin.replace(year=ymin, **self.replaced)]
        while 1:
            dt = ticks[-1]
            if dt.year>=ymax: return date2num(ticks)
            year = dt.year + self.base.get_base()
            ticks.append(dt.replace(year=year, **self.replaced))

    def autoscale(self):
        """
        Set the view limits to include the data range.
        """
        dmin, dmax = self.datalim_to_dt()

        ymin = self.base.le(dmin.year)
        ymax = self.base.ge(dmax.year)
        vmin = dmin.replace(year=ymin, **self.replaced)
        vmax = dmax.replace(year=ymax, **self.replaced)

        vmin = date2num(vmin)
        vmax = date2num(vmax)
        return self.nonsingular(vmin, vmax)

class MonthLocator(RRuleLocator):
    """
    Make ticks on occurances of each month month, eg 1, 3, 12.
    """
    def __init__(self,  bymonth=None, bymonthday=1, interval=1, tz=None):
        """
        Mark every month in *bymonth*; *bymonth* can be an int or
        sequence.  Default is ``range(1,13)``, i.e. every month.

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurance.
        """
        if bymonth is None: bymonth=range(1,13)
        o = rrulewrapper(MONTHLY, bymonth=bymonth, bymonthday=bymonthday,
                         interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, o, tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 30


class WeekdayLocator(RRuleLocator):
    """
    Make ticks on occurances of each weekday.
    """

    def __init__(self,  byweekday=1, interval=1, tz=None):
        """
        Mark every weekday in *byweekday*; *byweekday* can be a number or
        sequence.

        Elements of *byweekday* must be one of MO, TU, WE, TH, FR, SA,
        SU, the constants from :mod:`dateutils.rrule`.

        *interval* specifies the number of weeks to skip.  For example,
        ``interval=2`` plots every second week.
        """
        o = rrulewrapper(DAILY, byweekday=byweekday,
                         interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, o, tz)

    def _get_unit(self):
        """
        return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 7


class DayLocator(RRuleLocator):
    """
    Make ticks on occurances of each day of the month.  For example,
    1, 15, 30.
    """
    def __init__(self,  bymonthday=None, interval=1, tz=None):
        """
        Mark every day in *bymonthday*; *bymonthday* can be an int or
        sequence.

        Default is to tick every day of the month: ``bymonthday=range(1,32)``
        """
        if bymonthday is None: bymonthday=range(1,32)
        o = rrulewrapper(DAILY, bymonthday=bymonthday,
                         interval=interval, **self.hms0d)
        RRuleLocator.__init__(self, o, tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1

class HourLocator(RRuleLocator):
    """
    Make ticks on occurances of each hour.
    """
    def __init__(self,  byhour=None, interval=1, tz=None):
        """
        Mark every hour in *byhour*; *byhour* can be an int or sequence.
        Default is to tick every hour: ``byhour=range(24)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.
        """
        if byhour is None: byhour=range(24)
        rule = rrulewrapper(HOURLY, byhour=byhour, interval=interval,
                            byminute=0, bysecond=0)
        RRuleLocator.__init__(self, rule, tz)

    def _get_unit(self):
        """
        return how many days a unit of the locator is; use for
        intelligent autoscaling
        """
        return 1/24.

class MinuteLocator(RRuleLocator):
    """
    Make ticks on occurances of each minute.
    """
    def __init__(self,  byminute=None, interval=1, tz=None):
        """
        Mark every minute in *byminute*; *byminute* can be an int or
        sequence.  Default is to tick every minute: ``byminute=range(60)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.
        """
        if byminute is None: byminute=range(60)
        rule = rrulewrapper(MINUTELY, byminute=byminute, interval=interval,
                            bysecond=0)
        RRuleLocator.__init__(self, rule, tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1./(24*60)

class SecondLocator(RRuleLocator):
    """
    Make ticks on occurances of each second.
    """
    def __init__(self,  bysecond=None, interval=1, tz=None):
        """
        Mark every second in *bysecond*; *bysecond* can be an int or
        sequence.  Default is to tick every second: ``bysecond = range(60)``

        *interval* is the interval between each iteration.  For
        example, if ``interval=2``, mark every second occurrence.

        """
        if bysecond is None: bysecond=range(60)
        rule = rrulewrapper(SECONDLY, bysecond=bysecond, interval=interval)
        RRuleLocator.__init__(self, rule, tz)

    def _get_unit(self):
        """
        Return how many days a unit of the locator is; used for
        intelligent autoscaling.
        """
        return 1./(24*60*60)



def _close_to_dt(d1, d2, epsilon=5):
    'Assert that datetimes *d1* and *d2* are within *epsilon* microseconds.'
    delta = d2-d1
    mus = abs(delta.days*MUSECONDS_PER_DAY + delta.seconds*1e6 +
              delta.microseconds)
    assert(mus<epsilon)

def _close_to_num(o1, o2, epsilon=5):
    'Assert that float ordinals *o1* and *o2* are within *epsilon* microseconds.'
    delta = abs((o2-o1)*MUSECONDS_PER_DAY)
    assert(delta<epsilon)

def epoch2num(e):
    """
    Convert an epoch or sequence of epochs to the new date format,
    that is days since 0001.
    """
    spd = 24.*3600.
    return 719163 + np.asarray(e)/spd

def num2epoch(d):
    """
    Convert days since 0001 to epoch.  *d* can be a number or sequence.
    """
    spd = 24.*3600.
    return (np.asarray(d)-719163)*spd

def mx2num(mxdates):
    """
    Convert mx :class:`datetime` instance (or sequence of mx
    instances) to the new date format.
    """
    scalar = False
    if not cbook.iterable(mxdates):
        scalar = True
        mxdates = [mxdates]
    ret = epoch2num([m.ticks() for m in mxdates])
    if scalar: return ret[0]
    else: return ret


def date_ticker_factory(span, tz=None, numticks=5):
    """
    Create a date locator with *numticks* (approx) and a date formatter
    for *span* in days.  Return value is (locator, formatter).
    """

    if span==0: span = 1/24.

    minutes = span*24*60
    hours  = span*24
    days   = span
    weeks  = span/7.
    months = span/31. # approx
    years  = span/365.

    if years>numticks:
        locator = YearLocator(int(years/numticks), tz=tz)  # define
        fmt = '%Y'
    elif months>numticks:
        locator = MonthLocator(tz=tz)
        fmt = '%b %Y'
    elif weeks>numticks:
        locator = WeekdayLocator(tz=tz)
        fmt = '%a, %b %d'
    elif days>numticks:
        locator = DayLocator(interval=int(math.ceil(days/numticks)), tz=tz)
        fmt = '%b %d'
    elif hours>numticks:
        locator = HourLocator(interval=int(math.ceil(hours/numticks)), tz=tz)
        fmt = '%H:%M\n%b %d'
    elif minutes>numticks:
        locator = MinuteLocator(interval=int(math.ceil(minutes/numticks)), tz=tz)
        fmt = '%H:%M:%S'
    else:
        locator = MinuteLocator(tz=tz)
        fmt = '%H:%M:%S'


    formatter = DateFormatter(fmt, tz=tz)
    return locator, formatter


def seconds(s):
    'Return seconds as days.'
    return float(s)/SEC_PER_DAY

def minutes(m):
    'Return minutes as days.'
    return float(m)/MINUTES_PER_DAY

def hours(h):
    'Return hours as days.'
    return h/24.

def weeks(w):
    'Return weeks as days.'
    return w*7.


class DateConverter(units.ConversionInterface):
    """The units are equivalent to the timezone."""

    @staticmethod
    def axisinfo(unit, axis):
        'return the unit AxisInfo'
        # make sure that the axis does not start at 0
        if axis:
            ax = axis.axes

            if axis is ax.get_xaxis():
                xmin, xmax = ax.dataLim.intervalx
                if xmin==0.:
                    # no data has been added - let's set the default datalim.
                    # We should probably use a better proxy for the datalim
                    # have been updated than the ignore setting
                    dmax = today = datetime.date.today()
                    dmin = today-datetime.timedelta(days=10)

                    ax._process_unit_info(xdata=(dmin, dmax))
                    dmin, dmax = ax.convert_xunits([dmin, dmax])

                    ax.viewLim.intervalx = dmin, dmax
                    ax.dataLim.intervalx = dmin, dmax
            elif axis is ax.get_yaxis():
                ymin, ymax = ax.dataLim.intervaly
                if ymin==0.:
                    # no data has been added - let's set the default datalim.
                    # We should probably use a better proxy for the datalim
                    # have been updated than the ignore setting
                    dmax = today = datetime.date.today()
                    dmin = today-datetime.timedelta(days=10)

                    ax._process_unit_info(ydata=(dmin, dmax))
                    dmin, dmax = ax.convert_yunits([dmin, dmax])

                    ax.viewLim.intervaly = dmin, dmax
                    ax.dataLim.intervaly = dmin, dmax

        majloc = AutoDateLocator(tz=unit)
        majfmt = AutoDateFormatter(majloc, tz=unit)
        return units.AxisInfo( majloc=majloc, majfmt=majfmt, label='' )

    @staticmethod
    def convert(value, unit, axis):
        if units.ConversionInterface.is_numlike(value): return value
        return date2num(value)

    @staticmethod
    def default_units(x, axis):
        'Return the default unit for *x* or None'
        return None


units.registry[datetime.date] = DateConverter()
units.registry[datetime.datetime] = DateConverter()



if __name__=='__main__':

    #tz = None
    tz = pytz.timezone('US/Pacific')
    #tz = UTC

    dt = datetime.datetime(1011, 10, 9, 13, 44, 22, 101010, tzinfo=tz)
    x = date2num(dt)
    _close_to_dt(dt, num2date(x, tz))

    #tz = _get_rc_timezone()


    d1 = datetime.datetime( 2000, 3, 1, tzinfo=tz)
    d2 = datetime.datetime( 2000, 3, 5, tzinfo=tz)

    #d1 = datetime.datetime( 2002, 1, 5, tzinfo=tz)
    #d2 = datetime.datetime( 2003, 12, 1, tzinfo=tz)
    delta = datetime.timedelta(hours=6)
    dates = drange(d1, d2, delta)

    # MGDTODO: Broken on transforms branch
    #print 'orig', d1
    #print 'd2n and back', num2date(date2num(d1), tz)
    from _transforms import Value,Interval
    v1 = Value(date2num(d1))
    v2 = Value(date2num(d2))
    dlim = Interval(v1,v2)
    vlim = Interval(v1,v2)

    #locator = HourLocator(byhour=(3,15), tz=tz)
    #locator = MinuteLocator(byminute=(15,30,45), tz=tz)
    #locator = YearLocator(base=5, month=7, day=4, tz=tz)
    #locator = MonthLocator(bymonthday=15)
    locator = DayLocator(tz=tz)
    locator.set_data_interval(dlim)
    locator.set_view_interval(vlim)
    dmin, dmax = locator.autoscale()
    vlim.set_bounds(dmin, dmax)
    ticks =  locator()


    fmt = '%Y-%m-%d %H:%M:%S %Z'
    formatter = DateFormatter(fmt, tz)

    #for t in  ticks: print formatter(t)

    for t in dates: print formatter(t)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.