testfuncs.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » lib » matplotlib » delaunay » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » lib » matplotlib » delaunay » testfuncs.py
"""Some test functions for bivariate interpolation.

Most of these have been yoinked from ACM TOMS 792.
http://netlib.org/toms/792
"""

import numpy as np
from triangulate import Triangulation

class TestData(dict):
    def __init__(self, *args, **kwds):
        dict.__init__(self, *args, **kwds)
        self.__dict__ = self

class TestDataSet(object):
    def __init__(self, **kwds):
        self.__dict__.update(kwds)

data = TestData(
franke100=TestDataSet(
    x=np.array([ 0.0227035,  0.0539888,  0.0217008,  0.0175129,  0.0019029,
                -0.0509685,  0.0395408, -0.0487061,  0.0315828, -0.0418785,
                 0.1324189,  0.1090271,  0.1254439,  0.093454 ,  0.0767578,
                 0.1451874,  0.0626494,  0.1452734,  0.0958668,  0.0695559,
                 0.2645602,  0.2391645,  0.208899 ,  0.2767329,  0.1714726,
                 0.2266781,  0.1909212,  0.1867647,  0.2304634,  0.2426219,
                 0.3663168,  0.3857662,  0.3832392,  0.3179087,  0.3466321,
                 0.3776591,  0.3873159,  0.3812917,  0.3795364,  0.2803515,
                 0.4149771,  0.4277679,  0.420001 ,  0.4663631,  0.4855658,
                 0.4092026,  0.4792578,  0.4812279,  0.3977761,  0.4027321,
                 0.5848691,  0.5730076,  0.6063893,  0.5013894,  0.5741311,
                 0.6106955,  0.5990105,  0.5380621,  0.6096967,  0.5026188,
                 0.6616928,  0.6427836,  0.6396475,  0.6703963,  0.7001181,
                 0.633359 ,  0.6908947,  0.6895638,  0.6718889,  0.6837675,
                 0.7736939,  0.7635332,  0.7410424,  0.8258981,  0.7306034,
                 0.8086609,  0.8214531,  0.729064 ,  0.8076643,  0.8170951,
                 0.8424572,  0.8684053,  0.8366923,  0.9418461,  0.8478122,
                 0.8599583,  0.91757  ,  0.8596328,  0.9279871,  0.8512805,
                 1.044982 ,  0.9670631,  0.9857884,  0.9676313,  1.0129299,
                 0.965704 ,  1.0019855,  1.0359297,  1.0414677,  0.9471506]),
    y=np.array([-0.0310206,  0.1586742,  0.2576924,  0.3414014,  0.4943596,
                 0.5782854,  0.6993418,  0.7470194,  0.9107649,  0.996289 ,
                 0.050133 ,  0.0918555,  0.2592973,  0.3381592,  0.4171125,
                 0.5615563,  0.6552235,  0.7524066,  0.9146523,  0.9632421,
                 0.0292939,  0.0602303,  0.2668783,  0.3696044,  0.4801738,
                 0.5940595,  0.6878797,  0.8185576,  0.9046507,  0.9805412,
                 0.0396955,  0.0684484,  0.2389548,  0.3124129,  0.4902989,
                 0.5199303,  0.6445227,  0.8203789,  0.8938079,  0.9711719,
                -0.0284618,  0.1560965,  0.2262471,  0.3175094,  0.3891417,
                 0.5084949,  0.6324247,  0.7511007,  0.8489712,  0.9978728,
                -0.0271948,  0.127243 ,  0.2709269,  0.3477728,  0.4259422,
                 0.6084711,  0.6733781,  0.7235242,  0.9242411,  1.0308762,
                 0.0255959,  0.0707835,  0.2008336,  0.3259843,  0.4890704,
                 0.5096324,  0.669788 ,  0.7759569,  0.9366096,  1.0064516,
                 0.0285374,  0.1021403,  0.1936581,  0.3235775,  0.4714228,
                 0.6091595,  0.6685053,  0.8022808,  0.847679 ,  1.0512371,
                 0.0380499,  0.0902048,  0.2083092,  0.3318491,  0.4335632,
                 0.5910139,  0.6307383,  0.8144841,  0.904231 ,  0.969603 ,
                -0.01209  ,  0.1334114,  0.2695844,  0.3795281,  0.4396054,
                 0.5044425,  0.6941519,  0.7459923,  0.8682081,  0.9801409])),
franke33=TestDataSet(
    x=np.array([  5.00000000e-02,   0.00000000e+00,   0.00000000e+00,
                  0.00000000e+00,   1.00000000e-01,   1.00000000e-01,
                  1.50000000e-01,   2.00000000e-01,   2.50000000e-01,
                  3.00000000e-01,   3.50000000e-01,   5.00000000e-01,
                  5.00000000e-01,   5.50000000e-01,   6.00000000e-01,
                  6.00000000e-01,   6.00000000e-01,   6.50000000e-01,
                  7.00000000e-01,   7.00000000e-01,   7.00000000e-01,
                  7.50000000e-01,   7.50000000e-01,   7.50000000e-01,
                  8.00000000e-01,   8.00000000e-01,   8.50000000e-01,
                  9.00000000e-01,   9.00000000e-01,   9.50000000e-01,
                  1.00000000e+00,   1.00000000e+00,   1.00000000e+00]),
    y=np.array([  4.50000000e-01,   5.00000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.50000000e-01,   7.50000000e-01,
                  3.00000000e-01,   1.00000000e-01,   2.00000000e-01,
                  3.50000000e-01,   8.50000000e-01,   0.00000000e+00,
                  1.00000000e+00,   9.50000000e-01,   2.50000000e-01,
                  6.50000000e-01,   8.50000000e-01,   7.00000000e-01,
                  2.00000000e-01,   6.50000000e-01,   9.00000000e-01,
                  1.00000000e-01,   3.50000000e-01,   8.50000000e-01,
                  4.00000000e-01,   6.50000000e-01,   2.50000000e-01,
                  3.50000000e-01,   8.00000000e-01,   9.00000000e-01,
                  0.00000000e+00,   5.00000000e-01,   1.00000000e+00])),
lawson25=TestDataSet(
    x=np.array([ 0.1375,  0.9125,  0.7125,  0.225 , -0.05  ,  0.475 ,  0.05  ,
                 0.45  ,  1.0875,  0.5375, -0.0375,  0.1875,  0.7125,  0.85  ,
                 0.7   ,  0.275 ,  0.45  ,  0.8125,  0.45  ,  1.    ,  0.5   ,
                 0.1875,  0.5875,  1.05  ,  0.1   ]),
    y=np.array([ 0.975  ,  0.9875 ,  0.7625 ,  0.8375 ,  0.4125 ,  0.6375 ,
                -0.05   ,  1.0375 ,  0.55   ,  0.8    ,  0.75   ,  0.575  ,
                 0.55   ,  0.4375 ,  0.3125 ,  0.425  ,  0.2875 ,  0.1875 ,
                -0.0375 ,  0.2625 ,  0.4625 ,  0.2625 ,  0.125  , -0.06125,  0.1125 ])),
random100=TestDataSet(
    x=np.array([ 0.0096326,  0.0216348,  0.029836 ,  0.0417447,  0.0470462,
                 0.0562965,  0.0646857,  0.0740377,  0.0873907,  0.0934832,
                 0.1032216,  0.1110176,  0.1181193,  0.1251704,  0.132733 ,
                 0.1439536,  0.1564861,  0.1651043,  0.1786039,  0.1886405,
                 0.2016706,  0.2099886,  0.2147003,  0.2204141,  0.2343715,
                 0.240966 ,  0.252774 ,  0.2570839,  0.2733365,  0.2853833,
                 0.2901755,  0.2964854,  0.3019725,  0.3125695,  0.3307163,
                 0.3378504,  0.3439061,  0.3529922,  0.3635507,  0.3766172,
                 0.3822429,  0.3869838,  0.3973137,  0.4170708,  0.4255588,
                 0.4299218,  0.4372839,  0.4705033,  0.4736655,  0.4879299,
                 0.494026 ,  0.5055324,  0.5162593,  0.5219219,  0.5348529,
                 0.5483213,  0.5569571,  0.5638611,  0.5784908,  0.586395 ,
                 0.5929148,  0.5987839,  0.6117561,  0.6252296,  0.6331381,
                 0.6399048,  0.6488972,  0.6558537,  0.6677405,  0.6814074,
                 0.6887812,  0.6940896,  0.7061687,  0.7160957,  0.7317445,
                 0.7370798,  0.746203 ,  0.7566957,  0.7699998,  0.7879347,
                 0.7944014,  0.8164468,  0.8192794,  0.8368405,  0.8500993,
                 0.8588255,  0.8646496,  0.8792329,  0.8837536,  0.8900077,
                 0.8969894,  0.9044917,  0.9083947,  0.9203972,  0.9347906,
                 0.9434519,  0.9490328,  0.9569571,  0.9772067,  0.9983493]),
    y=np.array([ 0.3083158,  0.2450434,  0.8613847,  0.0977864,  0.3648355,
                 0.7156339,  0.5311312,  0.9755672,  0.1781117,  0.5452797,
                 0.1603881,  0.7837139,  0.9982015,  0.6910589,  0.104958 ,
                 0.8184662,  0.7086405,  0.4456593,  0.1178342,  0.3189021,
                 0.9668446,  0.7571834,  0.2016598,  0.3232444,  0.4368583,
                 0.8907869,  0.064726 ,  0.5692618,  0.2947027,  0.4332426,
                 0.3347464,  0.7436284,  0.1066265,  0.8845357,  0.515873 ,
                 0.9425637,  0.4799701,  0.1783069,  0.114676 ,  0.8225797,
                 0.2270688,  0.4073598,  0.887508 ,  0.7631616,  0.9972804,
                 0.4959884,  0.3410421,  0.249812 ,  0.6409007,  0.105869 ,
                 0.5411969,  0.0089792,  0.8784268,  0.5515874,  0.4038952,
                 0.1654023,  0.2965158,  0.3660356,  0.0366554,  0.950242 ,
                 0.2638101,  0.9277386,  0.5377694,  0.7374676,  0.4674627,
                 0.9186109,  0.0416884,  0.1291029,  0.6763676,  0.8444238,
                 0.3273328,  0.1893879,  0.0645923,  0.0180147,  0.8904992,
                 0.4160648,  0.4688995,  0.2174508,  0.5734231,  0.8853319,
                 0.8018436,  0.6388941,  0.8931002,  0.1000558,  0.2789506,
                 0.9082948,  0.3259159,  0.8318747,  0.0508513,  0.970845 ,
                 0.5120548,  0.2859716,  0.9581641,  0.6183429,  0.3779934,
                 0.4010423,  0.9478657,  0.7425486,  0.8883287,  0.549675 ])),
uniform9=TestDataSet(
    x=np.array([  1.25000000e-01,   0.00000000e+00,   0.00000000e+00,
                  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
                  0.00000000e+00,   0.00000000e+00,   0.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   1.25000000e-01,
                  1.25000000e-01,   1.25000000e-01,   1.25000000e-01,
                  1.25000000e-01,   1.25000000e-01,   1.25000000e-01,
                  2.50000000e-01,   2.50000000e-01,   2.50000000e-01,
                  2.50000000e-01,   2.50000000e-01,   2.50000000e-01,
                  2.50000000e-01,   2.50000000e-01,   2.50000000e-01,
                  3.75000000e-01,   3.75000000e-01,   3.75000000e-01,
                  3.75000000e-01,   3.75000000e-01,   3.75000000e-01,
                  3.75000000e-01,   3.75000000e-01,   3.75000000e-01,
                  5.00000000e-01,   5.00000000e-01,   5.00000000e-01,
                  5.00000000e-01,   5.00000000e-01,   5.00000000e-01,
                  5.00000000e-01,   5.00000000e-01,   5.00000000e-01,
                  6.25000000e-01,   6.25000000e-01,   6.25000000e-01,
                  6.25000000e-01,   6.25000000e-01,   6.25000000e-01,
                  6.25000000e-01,   6.25000000e-01,   6.25000000e-01,
                  7.50000000e-01,   7.50000000e-01,   7.50000000e-01,
                  7.50000000e-01,   7.50000000e-01,   7.50000000e-01,
                  7.50000000e-01,   7.50000000e-01,   7.50000000e-01,
                  8.75000000e-01,   8.75000000e-01,   8.75000000e-01,
                  8.75000000e-01,   8.75000000e-01,   8.75000000e-01,
                  8.75000000e-01,   8.75000000e-01,   8.75000000e-01,
                  1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
                  1.00000000e+00,   1.00000000e+00,   1.00000000e+00,
                  1.00000000e+00,   1.00000000e+00,   1.00000000e+00]),
    y=np.array([  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00,
                  0.00000000e+00,   1.25000000e-01,   2.50000000e-01,
                  3.75000000e-01,   5.00000000e-01,   6.25000000e-01,
                  7.50000000e-01,   8.75000000e-01,   1.00000000e+00])),
)





def constant(x, y):
    return np.ones(x.shape, x.dtype)
constant.title = 'Constant'

def xramp(x, y):
    return x
xramp.title = 'X Ramp'

def yramp(x, y):
    return y
yramp.title = 'Y Ramp'

def exponential(x, y):
    x = x*9
    y = y*9
    x1 = x+1.0
    x2 = x-2.0
    x4 = x-4.0
    x7 = x-7.0
    y1 = x+1.0
    y2 = y-2.0
    y3 = y-3.0
    y7 = y-7.0
    f = (0.75 * np.exp(-(x2*x2+y2*y2)/4.0) +
         0.75 * np.exp(-x1*x1/49.0 - y1/10.0) +
         0.5 * np.exp(-(x7*x7 + y3*y3)/4.0) -
         0.2 * np.exp(-x4*x4 -y7*y7))
    return f
exponential.title = 'Exponential and Some Gaussians'

def cliff(x, y):
    f = np.tanh(9.0*(y-x) + 1.0)/9.0
    return f
cliff.title = 'Cliff'

def saddle(x, y):
    f = (1.25 + np.cos(5.4*y))/(6.0 + 6.0*(3*x-1.0)**2)
    return f
saddle.title = 'Saddle'

def gentle(x, y):
    f = np.exp(-5.0625*((x-0.5)**2+(y-0.5)**2))/3.0
    return f
gentle.title = 'Gentle Peak'

def steep(x, y):
    f = np.exp(-20.25*((x-0.5)**2+(y-0.5)**2))/3.0
    return f
steep.title = 'Steep Peak'

def sphere(x, y):
    circle = 64-81*((x-0.5)**2 + (y-0.5)**2)
    f = np.where(circle >= 0, np.sqrt(np.clip(circle,0,100)) - 0.5, 0.0)
    return f
sphere.title = 'Sphere'

def trig(x, y):
    f = 2.0*np.cos(10.0*x)*np.sin(10.0*y) + np.sin(10.0*x*y)
    return f
trig.title = 'Cosines and Sines'

def gauss(x, y):
    x = 5.0-10.0*x
    y = 5.0-10.0*y
    g1 = np.exp(-x*x/2)
    g2 = np.exp(-y*y/2)
    f = g1 + 0.75*g2*(1 + g1)
    return f
gauss.title = 'Gaussian Peak and Gaussian Ridges'

def cloverleaf(x, y):
    ex = np.exp((10.0-20.0*x)/3.0)
    ey = np.exp((10.0-20.0*y)/3.0)
    logitx = 1.0/(1.0+ex)
    logity = 1.0/(1.0+ey)
    f = (((20.0/3.0)**3 * ex*ey)**2 * (logitx*logity)**5 *
        (ex-2.0*logitx)*(ey-2.0*logity))
    return f
cloverleaf.title = 'Cloverleaf'

def cosine_peak(x, y):
    circle = np.hypot(80*x-40.0, 90*y-45.)
    f = np.exp(-0.04*circle) * np.cos(0.15*circle)
    return f
cosine_peak.title = 'Cosine Peak'

allfuncs = [exponential, cliff, saddle, gentle, steep, sphere, trig, gauss, cloverleaf, cosine_peak]


class LinearTester(object):
    name = 'Linear'
    def __init__(self, xrange=(0.0, 1.0), yrange=(0.0, 1.0), nrange=101, npoints=250):
        self.xrange = xrange
        self.yrange = yrange
        self.nrange = nrange
        self.npoints = npoints

        rng = np.random.RandomState(1234567890)
        self.x = rng.uniform(xrange[0], xrange[1], size=npoints)
        self.y = rng.uniform(yrange[0], yrange[1], size=npoints)
        self.tri = Triangulation(self.x, self.y)

    def replace_data(self, dataset):
        self.x = dataset.x
        self.y = dataset.y
        self.tri = Triangulation(self.x, self.y)

    def interpolator(self, func):
        z = func(self.x, self.y)
        return self.tri.linear_extrapolator(z, bbox=self.xrange+self.yrange)

    def plot(self, func, interp=True, plotter='imshow'):
        import matplotlib as mpl
        from matplotlib import pylab
        if interp:
            lpi = self.interpolator(func)
            z = lpi[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                    self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
        else:
            y, x = np.mgrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                            self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
            z = func(x, y)

        z = np.where(np.isinf(z), 0.0, z)

        extent = (self.xrange[0], self.xrange[1],
            self.yrange[0], self.yrange[1])
        pl.ioff()
        pl.clf()
        pl.hot() # Some like it hot
        if plotter == 'imshow':
            pl.imshow(np.nan_to_num(z), interpolation='nearest', extent=extent, origin='lower')
        elif plotter == 'contour':
            Y, X = np.ogrid[self.yrange[0]:self.yrange[1]:complex(0,self.nrange),
                self.xrange[0]:self.xrange[1]:complex(0,self.nrange)]
            pl.contour(np.ravel(X), np.ravel(Y), z, 20)
        x = self.x
        y = self.y
        lc = mpl.collections.LineCollection(np.array([((x[i], y[i]), (x[j], y[j]))
            for i, j in self.tri.edge_db]), colors=[(0,0,0,0.2)])
        ax = pl.gca()
        ax.add_collection(lc)

        if interp:
            title = '%s Interpolant' % self.name
        else:
            title = 'Reference'
        if hasattr(func, 'title'):
            pl.title('%s: %s' % (func.title, title))
        else:
            pl.title(title)

        pl.show()
        pl.ion()

class NNTester(LinearTester):
    name = 'Natural Neighbors'
    def interpolator(self, func):
        z = func(self.x, self.y)
        return self.tri.nn_extrapolator(z, bbox=self.xrange+self.yrange)

def plotallfuncs(allfuncs=allfuncs):
    from matplotlib import pylab
    pl.ioff()
    nnt = NNTester(npoints=1000)
    lpt = LinearTester(npoints=1000)
    for func in allfuncs:
        print func.title
        nnt.plot(func, interp=False, plotter='imshow')
        pl.savefig('%s-ref-img.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-nn-img.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='imshow')
        pl.savefig('%s-lin-img.png' % func.func_name)
        nnt.plot(func, interp=False, plotter='contour')
        pl.savefig('%s-ref-con.png' % func.func_name)
        nnt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-nn-con.png' % func.func_name)
        lpt.plot(func, interp=True, plotter='contour')
        pl.savefig('%s-lin-con.png' % func.func_name)
    pl.ion()

def plot_dt(tri, colors=None):
    import matplotlib as mpl
    from matplotlib import pylab
    if colors is None:
        colors = [(0,0,0,0.2)]
    lc = mpl.collections.LineCollection(np.array([((tri.x[i], tri.y[i]), (tri.x[j], tri.y[j]))
            for i, j in tri.edge_db]), colors=colors)
    ax = pl.gca()
    ax.add_collection(lc)
    pl.draw_if_interactive()

def plot_vo(tri, colors=None):
    import matplotlib as mpl
    from matplotlib import pylab
    if colors is None:
        colors = [(0,1,0,0.2)]
    lc = mpl.collections.LineCollection(np.array(
        [(tri.circumcenters[i], tri.circumcenters[j])
            for i in xrange(len(tri.circumcenters))
                for j in tri.triangle_neighbors[i] if j != -1]),
        colors=colors)
    ax = pl.gca()
    ax.add_collection(lc)
    pl.draw_if_interactive()

def plot_cc(tri, edgecolor=None):
    import matplotlib as mpl
    from matplotlib import pylab
    if edgecolor is None:
        edgecolor = (0,0,1,0.2)
    dxy = (np.array([(tri.x[i], tri.y[i]) for i,j,k in tri.triangle_nodes])
        - tri.circumcenters)
    r = np.hypot(dxy[:,0], dxy[:,1])
    ax = pl.gca()
    for i in xrange(len(r)):
        p = mpl.patches.Circle(tri.circumcenters[i], r[i], resolution=100, edgecolor=edgecolor,
            facecolor=(1,1,1,0), linewidth=0.2)
        ax.add_patch(p)
    pl.draw_if_interactive()

def quality(func, mesh, interpolator='nn', n=33):
    """Compute a quality factor (the quantity r**2 from TOMS792).

    interpolator must be in ('linear', 'nn').
    """
    fz = func(mesh.x, mesh.y)
    tri = Triangulation(mesh.x, mesh.y)
    intp = getattr(tri, interpolator+'_extrapolator')(fz, bbox=(0.,1.,0.,1.))
    Y, X = np.mgrid[0:1:complex(0,n),0:1:complex(0,n)]
    Z = func(X, Y)
    iz = intp[0:1:complex(0,n),0:1:complex(0,n)]
    #nans = np.isnan(iz)
    #numgood = n*n - np.sum(np.array(nans.flat, np.int32))
    numgood = n*n

    SE = (Z - iz)**2
    SSE = np.sum(SE.flat)
    meanZ = np.sum(Z.flat) / numgood
    SM = (Z - meanZ)**2
    SSM = np.sum(SM.flat)


    r2 = 1.0 - SSE/SSM
    print func.func_name, r2, SSE, SSM, numgood
    return r2

def allquality(interpolator='nn', allfuncs=allfuncs, data=data, n=33):
    results = {}
    kv = data.items()
    kv.sort()
    for name, mesh in kv:
        reslist = results.setdefault(name, [])
        for func in allfuncs:
            reslist.append(quality(func, mesh, interpolator, n))
    return results


def funky():
    x0 = np.array([0.25, 0.3, 0.5, 0.6, 0.6])
    y0 = np.array([0.2, 0.35, 0.0, 0.25, 0.65])
    tx = 0.46
    ty = 0.23
    t0 = Triangulation(x0, y0)
    t1 = Triangulation(np.hstack((x0, [tx])), np.hstack((y0, [ty])))
    return t0, t1
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.