polar.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » lib » matplotlib » projections » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » lib » matplotlib » projections » polar.py
import math
import warnings

import numpy as npy

import matplotlib
rcParams = matplotlib.rcParams
from matplotlib.artist import kwdocd
from matplotlib.axes import Axes
import matplotlib.axis as maxis
from matplotlib import cbook
from matplotlib.patches import Circle
from matplotlib.path import Path
from matplotlib.ticker import Formatter,Locator
from matplotlib.transforms import Affine2D,Affine2DBase,Bbox,\
    BboxTransformTo, IdentityTransform, Transform, TransformWrapper
import matplotlib.spines as mspines

class PolarAxes(Axes):
    """
    A polar graph projection, where the input dimensions are *theta*, *r*.

    Theta starts pointing east and goes anti-clockwise.
    """
    name = 'polar'

    class PolarTransform(Transform):
        """
        The base polar transform.  This handles projection *theta* and
        *r* into Cartesian coordinate space *x* and *y*, but does not
        perform the ultimate affine transformation into the correct
        position.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def transform(self, tr):
            xy   = npy.zeros(tr.shape, npy.float_)
            t    = tr[:, 0:1]
            r    = tr[:, 1:2]
            x    = xy[:, 0:1]
            y    = xy[:, 1:2]
            x[:] = r * npy.cos(t)
            y[:] = r * npy.sin(t)
            return xy
        transform.__doc__ = Transform.transform.__doc__

        transform_non_affine = transform
        transform_non_affine.__doc__ = Transform.transform_non_affine.__doc__

        def transform_path(self, path):
            vertices = path.vertices
            if len(vertices) == 2 and vertices[0, 0] == vertices[1, 0]:
                return Path(self.transform(vertices), path.codes)
            ipath = path.interpolated(path._interpolation_steps)
            return Path(self.transform(ipath.vertices), ipath.codes)
        transform_path.__doc__ = Transform.transform_path.__doc__

        transform_path_non_affine = transform_path
        transform_path_non_affine.__doc__ = Transform.transform_path_non_affine.__doc__

        def inverted(self):
            return PolarAxes.InvertedPolarTransform()
        inverted.__doc__ = Transform.inverted.__doc__

    class PolarAffine(Affine2DBase):
        """
        The affine part of the polar projection.  Scales the output so
        that maximum radius rests on the edge of the axes circle.
        """
        def __init__(self, scale_transform, limits):
            u"""
            *limits* is the view limit of the data.  The only part of
            its bounds that is used is ymax (for the radius maximum).
            The theta range is always fixed to (0, 2\u03c0).
            """
            Affine2DBase.__init__(self)
            self._scale_transform = scale_transform
            self._limits = limits
            self.set_children(scale_transform, limits)
            self._mtx = None

        def get_matrix(self):
            if self._invalid:
                limits_scaled = self._limits.transformed(self._scale_transform)
                ymax = limits_scaled.ymax
                affine = Affine2D() \
                    .scale(0.5 / ymax) \
                    .translate(0.5, 0.5)
                self._mtx = affine.get_matrix()
                self._inverted = None
                self._invalid = 0
            return self._mtx
        get_matrix.__doc__ = Affine2DBase.get_matrix.__doc__

    class InvertedPolarTransform(Transform):
        """
        The inverse of the polar transform, mapping Cartesian
        coordinate space *x* and *y* back to *theta* and *r*.
        """
        input_dims = 2
        output_dims = 2
        is_separable = False

        def transform(self, xy):
            x = xy[:, 0:1]
            y = xy[:, 1:]
            r = npy.sqrt(x*x + y*y)
            theta = npy.arccos(x / r)
            theta = npy.where(y < 0, 2 * npy.pi - theta, theta)
            return npy.concatenate((theta, r), 1)
        transform.__doc__ = Transform.transform.__doc__

        def inverted(self):
            return PolarAxes.PolarTransform()
        inverted.__doc__ = Transform.inverted.__doc__

    class ThetaFormatter(Formatter):
        u"""
        Used to format the *theta* tick labels.  Converts the
        native unit of radians into degrees and adds a degree symbol
        (\u00b0).
        """
        def __call__(self, x, pos=None):
            # \u00b0 : degree symbol
            if rcParams['text.usetex'] and not rcParams['text.latex.unicode']:
                return r"$%0.0f^\circ$" % ((x / npy.pi) * 180.0)
            else:
                # we use unicode, rather than mathtext with \circ, so
                # that it will work correctly with any arbitrary font
                # (assuming it has a degree sign), whereas $5\circ$
                # will only work correctly with one of the supported
                # math fonts (Computer Modern and STIX)
                return u"%0.0f\u00b0" % ((x / npy.pi) * 180.0)

    class RadialLocator(Locator):
        """
        Used to locate radius ticks.

        Ensures that all ticks are strictly positive.  For all other
        tasks, it delegates to the base
        :class:`~matplotlib.ticker.Locator` (which may be different
        depending on the scale of the *r*-axis.
        """
        def __init__(self, base):
            self.base = base

        def __call__(self):
            ticks = self.base()
            return [x for x in ticks if x > 0]

        def autoscale(self):
            return self.base.autoscale()

        def pan(self, numsteps):
            return self.base.pan(numsteps)

        def zoom(self, direction):
            return self.base.zoom(direction)

        def refresh(self):
            return self.base.refresh()

        def view_limits(self, vmin, vmax):
            vmin, vmax = self.base.view_limits(vmin, vmax)
            return 0, vmax


    def __init__(self, *args, **kwargs):
        """
        Create a new Polar Axes for a polar plot.

        The following optional kwargs are supported:

          - *resolution*: The number of points of interpolation between
            each pair of data points.  Set to 1 to disable
            interpolation.
        """

        self._rpad = 0.05
        self.resolution = kwargs.pop('resolution', None)
        if self.resolution not in (None, 1):
            warnings.warn(
                """The resolution kwarg to Polar plots is now ignored.
If you need to interpolate data points, consider running
cbook.simple_linear_interpolation on the data before passing to matplotlib.""")
        Axes.__init__(self, *args, **kwargs)
        self.set_aspect('equal', adjustable='box', anchor='C')
        self.cla()
    __init__.__doc__ = Axes.__init__.__doc__

    def cla(self):
        Axes.cla(self)

        self.title.set_y(1.05)

        self.xaxis.set_major_formatter(self.ThetaFormatter())
        angles = npy.arange(0.0, 360.0, 45.0)
        self.set_thetagrids(angles)
        self.yaxis.set_major_locator(self.RadialLocator(self.yaxis.get_major_locator()))

        self.grid(rcParams['polaraxes.grid'])
        self.xaxis.set_ticks_position('none')
        self.yaxis.set_ticks_position('none')

    def _init_axis(self):
        "move this out of __init__ because non-separable axes don't use it"
        self.xaxis = maxis.XAxis(self)
        self.yaxis = maxis.YAxis(self)
        # Calling polar_axes.xaxis.cla() or polar_axes.xaxis.cla()
        # results in weird artifacts. Therefore we disable this for
        # now.
        # self.spines['polar'].register_axis(self.yaxis)
        self._update_transScale()

    def _set_lim_and_transforms(self):
        self.transAxes = BboxTransformTo(self.bbox)

        # Transforms the x and y axis separately by a scale factor
        # It is assumed that this part will have non-linear components
        self.transScale = TransformWrapper(IdentityTransform())

        # A (possibly non-linear) projection on the (already scaled) data
        self.transProjection = self.PolarTransform()

        # An affine transformation on the data, generally to limit the
        # range of the axes
        self.transProjectionAffine = self.PolarAffine(self.transScale, self.viewLim)

        # The complete data transformation stack -- from data all the
        # way to display coordinates
        self.transData = self.transScale + self.transProjection + \
            (self.transProjectionAffine + self.transAxes)

        # This is the transform for theta-axis ticks.  It is
        # equivalent to transData, except it always puts r == 1.0 at
        # the edge of the axis circle.
        self._xaxis_transform = (
            self.transProjection +
            self.PolarAffine(IdentityTransform(), Bbox.unit()) +
            self.transAxes)
        # The theta labels are moved from radius == 0.0 to radius == 1.1
        self._theta_label1_position = Affine2D().translate(0.0, 1.1)
        self._xaxis_text1_transform = (
            self._theta_label1_position +
            self._xaxis_transform)
        self._theta_label2_position = Affine2D().translate(0.0, 1.0 / 1.1)
        self._xaxis_text2_transform = (
            self._theta_label2_position +
            self._xaxis_transform)

        # This is the transform for r-axis ticks.  It scales the theta
        # axis so the gridlines from 0.0 to 1.0, now go from 0.0 to
        # 2pi.
        self._yaxis_transform = (
            Affine2D().scale(npy.pi * 2.0, 1.0) +
            self.transData)
        # The r-axis labels are put at an angle and padded in the r-direction
        self._r_label1_position = Affine2D().translate(22.5, self._rpad)
        self._yaxis_text1_transform = (
            self._r_label1_position +
            Affine2D().scale(1.0 / 360.0, 1.0) +
            self._yaxis_transform
            )
        self._r_label2_position = Affine2D().translate(22.5, self._rpad)
        self._yaxis_text2_transform = (
            self._r_label2_position +
            Affine2D().scale(1.0 / 360.0, 1.0) +
            self._yaxis_transform
            )

    def get_xaxis_transform(self,which='grid'):
        assert which in ['tick1','tick2','grid']
        return self._xaxis_transform

    def get_xaxis_text1_transform(self, pad):
        return self._xaxis_text1_transform, 'center', 'center'

    def get_xaxis_text2_transform(self, pad):
        return self._xaxis_text2_transform, 'center', 'center'

    def get_yaxis_transform(self,which='grid'):
        assert which in ['tick1','tick2','grid']
        return self._yaxis_transform

    def get_yaxis_text1_transform(self, pad):
        return self._yaxis_text1_transform, 'center', 'center'

    def get_yaxis_text2_transform(self, pad):
        return self._yaxis_text2_transform, 'center', 'center'

    def _gen_axes_patch(self):
        return Circle((0.5, 0.5), 0.5)

    def _gen_axes_spines(self):
        return {'polar':mspines.Spine.circular_spine(self,
                                                     (0.5, 0.5), 0.5)}

    def set_rmax(self, rmax):
        self.viewLim.y0 = 0
        self.viewLim.y1 = rmax
        angle = self._r_label1_position.to_values()[4]
        self._r_label1_position.clear().translate(
            angle, rmax * self._rpad)
        self._r_label2_position.clear().translate(
            angle, -rmax * self._rpad)

    def get_rmax(self):
        return self.viewLim.ymax

    def set_yscale(self, *args, **kwargs):
        Axes.set_yscale(self, *args, **kwargs)
        self.yaxis.set_major_locator(
            self.RadialLocator(self.yaxis.get_major_locator()))

    set_rscale = Axes.set_yscale
    set_rticks = Axes.set_yticks

    def set_thetagrids(self, angles, labels=None, frac=None,
                       **kwargs):
        """
        Set the angles at which to place the theta grids (these
        gridlines are equal along the theta dimension).  *angles* is in
        degrees.

        *labels*, if not None, is a ``len(angles)`` list of strings of
        the labels to use at each angle.

        If *labels* is None, the labels will be ``fmt %% angle``

        *frac* is the fraction of the polar axes radius at which to
        place the label (1 is the edge). Eg. 1.05 is outside the axes
        and 0.95 is inside the axes.

        Return value is a list of tuples (*line*, *label*), where
        *line* is :class:`~matplotlib.lines.Line2D` instances and the
        *label* is :class:`~matplotlib.text.Text` instances.

        kwargs are optional text properties for the labels:

        %(Text)s

        ACCEPTS: sequence of floats
        """
        angles = npy.asarray(angles, npy.float_)
        self.set_xticks(angles * (npy.pi / 180.0))
        if labels is not None:
            self.set_xticklabels(labels)
        if frac is not None:
            self._theta_label1_position.clear().translate(0.0, frac)
            self._theta_label2_position.clear().translate(0.0, 1.0 / frac)
        for t in self.xaxis.get_ticklabels():
            t.update(kwargs)
        return self.xaxis.get_ticklines(), self.xaxis.get_ticklabels()
    set_thetagrids.__doc__ = cbook.dedent(set_thetagrids.__doc__) % kwdocd

    def set_rgrids(self, radii, labels=None, angle=None, rpad=None, **kwargs):
        """
        Set the radial locations and labels of the *r* grids.

        The labels will appear at radial distances *radii* at the
        given *angle* in degrees.

        *labels*, if not None, is a ``len(radii)`` list of strings of the
        labels to use at each radius.

        If *labels* is None, the built-in formatter will be used.

        *rpad* is a fraction of the max of *radii* which will pad each of
        the radial labels in the radial direction.

        Return value is a list of tuples (*line*, *label*), where
        *line* is :class:`~matplotlib.lines.Line2D` instances and the
        *label* is :class:`~matplotlib.text.Text` instances.

        kwargs are optional text properties for the labels:

        %(Text)s

        ACCEPTS: sequence of floats
        """
        radii = npy.asarray(radii)
        rmin = radii.min()
        if rmin <= 0:
            raise ValueError('radial grids must be strictly positive')

        self.set_yticks(radii)
        if labels is not None:
            self.set_yticklabels(labels)
        if angle is None:
            angle = self._r_label1_position.to_values()[4]
        if rpad is not None:
            self._rpad = rpad
        rmax = self.get_rmax()
        self._r_label1_position.clear().translate(angle, self._rpad * rmax)
        self._r_label2_position.clear().translate(angle, -self._rpad * rmax)
        for t in self.yaxis.get_ticklabels():
            t.update(kwargs)
        return self.yaxis.get_gridlines(), self.yaxis.get_ticklabels()

    set_rgrids.__doc__ = cbook.dedent(set_rgrids.__doc__) % kwdocd

    def set_xscale(self, scale, *args, **kwargs):
        if scale != 'linear':
            raise NotImplementedError("You can not set the xscale on a polar plot.")

    def set_xlim(self, *args, **kargs):
        # The xlim is fixed, no matter what you do
        self.viewLim.intervalx = (0.0, npy.pi * 2.0)

    def format_coord(self, theta, r):
        """
        Return a format string formatting the coordinate using Unicode
        characters.
        """
        theta /= math.pi
        # \u03b8: lower-case theta
        # \u03c0: lower-case pi
        # \u00b0: degree symbol
        return u'\u03b8=%0.3f\u03c0 (%0.3f\u00b0), r=%0.3f' % (theta, theta * 180.0, r)

    def get_data_ratio(self):
        '''
        Return the aspect ratio of the data itself.  For a polar plot,
        this should always be 1.0
        '''
        return 1.0

    ### Interactive panning

    def can_zoom(self):
        """
        Return True if this axes support the zoom box
        """
        return False

    def start_pan(self, x, y, button):
        angle = self._r_label1_position.to_values()[4] / 180.0 * npy.pi
        mode = ''
        if button == 1:
            epsilon = npy.pi / 45.0
            t, r = self.transData.inverted().transform_point((x, y))
            if t >= angle - epsilon and t <= angle + epsilon:
                mode = 'drag_r_labels'
        elif button == 3:
            mode = 'zoom'

        self._pan_start = cbook.Bunch(
            rmax          = self.get_rmax(),
            trans         = self.transData.frozen(),
            trans_inverse = self.transData.inverted().frozen(),
            r_label_angle = self._r_label1_position.to_values()[4],
            x             = x,
            y             = y,
            mode          = mode
            )

    def end_pan(self):
        del self._pan_start

    def drag_pan(self, button, key, x, y):
        p = self._pan_start

        if p.mode == 'drag_r_labels':
            startt, startr = p.trans_inverse.transform_point((p.x, p.y))
            t, r = p.trans_inverse.transform_point((x, y))

            # Deal with theta
            dt0 = t - startt
            dt1 = startt - t
            if abs(dt1) < abs(dt0):
                dt = abs(dt1) * sign(dt0) * -1.0
            else:
                dt = dt0 * -1.0
            dt = (dt / npy.pi) * 180.0

            rpad = self._r_label1_position.to_values()[5]
            self._r_label1_position.clear().translate(
                p.r_label_angle - dt, rpad)
            self._r_label2_position.clear().translate(
                p.r_label_angle - dt, -rpad)

        elif p.mode == 'zoom':
            startt, startr = p.trans_inverse.transform_point((p.x, p.y))
            t, r = p.trans_inverse.transform_point((x, y))

            dr = r - startr

            # Deal with r
            scale = r / startr
            self.set_rmax(p.rmax / scale)

# These are a couple of aborted attempts to project a polar plot using
# cubic bezier curves.

#         def transform_path(self, path):
#             twopi = 2.0 * npy.pi
#             halfpi = 0.5 * npy.pi

#             vertices = path.vertices
#             t0 = vertices[0:-1, 0]
#             t1 = vertices[1:  , 0]
#             td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
#             maxtd = td.max()
#             interpolate = npy.ceil(maxtd / halfpi)
#             if interpolate > 1.0:
#                 vertices = self.interpolate(vertices, interpolate)

#             vertices = self.transform(vertices)

#             result = npy.zeros((len(vertices) * 3 - 2, 2), npy.float_)
#             codes = mpath.Path.CURVE4 * npy.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type)
#             result[0] = vertices[0]
#             codes[0] = mpath.Path.MOVETO

#             kappa = 4.0 * ((npy.sqrt(2.0) - 1.0) / 3.0)
#             kappa = 0.5

#             p0   = vertices[0:-1]
#             p1   = vertices[1:  ]

#             x0   = p0[:, 0:1]
#             y0   = p0[:, 1: ]
#             b0   = ((y0 - x0) - y0) / ((x0 + y0) - x0)
#             a0   = y0 - b0*x0

#             x1   = p1[:, 0:1]
#             y1   = p1[:, 1: ]
#             b1   = ((y1 - x1) - y1) / ((x1 + y1) - x1)
#             a1   = y1 - b1*x1

#             x = -(a0-a1) / (b0-b1)
#             y = a0 + b0*x

#             xk = (x - x0) * kappa + x0
#             yk = (y - y0) * kappa + y0

#             result[1::3, 0:1] = xk
#             result[1::3, 1: ] = yk

#             xk = (x - x1) * kappa + x1
#             yk = (y - y1) * kappa + y1

#             result[2::3, 0:1] = xk
#             result[2::3, 1: ] = yk

#             result[3::3] = p1

#             print vertices[-2:]
#             print result[-2:]

#             return mpath.Path(result, codes)

#             twopi = 2.0 * npy.pi
#             halfpi = 0.5 * npy.pi

#             vertices = path.vertices
#             t0 = vertices[0:-1, 0]
#             t1 = vertices[1:  , 0]
#             td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
#             maxtd = td.max()
#             interpolate = npy.ceil(maxtd / halfpi)

#             print "interpolate", interpolate
#             if interpolate > 1.0:
#                 vertices = self.interpolate(vertices, interpolate)

#             result = npy.zeros((len(vertices) * 3 - 2, 2), npy.float_)
#             codes = mpath.Path.CURVE4 * npy.ones((len(vertices) * 3 - 2, ), mpath.Path.code_type)
#             result[0] = vertices[0]
#             codes[0] = mpath.Path.MOVETO

#             kappa = 4.0 * ((npy.sqrt(2.0) - 1.0) / 3.0)
#             tkappa = npy.arctan(kappa)
#             hyp_kappa = npy.sqrt(kappa*kappa + 1.0)

#             t0 = vertices[0:-1, 0]
#             t1 = vertices[1:  , 0]
#             r0 = vertices[0:-1, 1]
#             r1 = vertices[1:  , 1]

#             td = npy.where(t1 > t0, t1 - t0, twopi - (t0 - t1))
#             td_scaled = td / (npy.pi * 0.5)
#             rd = r1 - r0
#             r0kappa = r0 * kappa * td_scaled
#             r1kappa = r1 * kappa * td_scaled
#             ravg_kappa = ((r1 + r0) / 2.0) * kappa * td_scaled

#             result[1::3, 0] = t0 + (tkappa * td_scaled)
#             result[1::3, 1] = r0*hyp_kappa
#             # result[1::3, 1] = r0 / npy.cos(tkappa * td_scaled) # npy.sqrt(r0*r0 + ravg_kappa*ravg_kappa)

#             result[2::3, 0] = t1 - (tkappa * td_scaled)
#             result[2::3, 1] = r1*hyp_kappa
#             # result[2::3, 1] = r1 / npy.cos(tkappa * td_scaled) # npy.sqrt(r1*r1 + ravg_kappa*ravg_kappa)

#             result[3::3, 0] = t1
#             result[3::3, 1] = r1

#             print vertices[:6], result[:6], t0[:6], t1[:6], td[:6], td_scaled[:6], tkappa
#             result = self.transform(result)
#             return mpath.Path(result, codes)
#         transform_path_non_affine = transform_path


www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.