spines.py :  » Chart-Report » Matplotlib » matplotlib-0.99.1.1 » lib » matplotlib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Matplotlib 
Matplotlib » matplotlib 0.99.1.1 » lib » matplotlib » spines.py
from __future__ import division

import matplotlib
rcParams = matplotlib.rcParams

import matplotlib.artist as martist
from matplotlib.artist import allow_rasterization
import matplotlib.transforms as mtransforms
import matplotlib.lines as mlines
import matplotlib.patches as mpatches
import matplotlib.path as mpath
import matplotlib.cbook as cbook
import warnings

class Spine(mpatches.Patch):
    """an axis spine -- the line noting the data area boundaries

    Spines are the lines connecting the axis tick marks and noting the
    boundaries of the data area. They can be placed at arbitrary
    positions. See function:`~matplotlib.spines.Spine.set_position`
    for more information.

    The default position is ``('outward',0)``.

    Spines are subclasses of class:`~matplotlib.patches.Patch`, and
    inherit much of their behavior.

    Spines draw a line or a circle, depending if
    function:`~matplotlib.spines.Spine.set_patch_line` or
    function:`~matplotlib.spines.Spine.set_patch_circle` has been
    called. Line-like is the default.

    """
    def __str__(self):
        return "Spine"

    def __init__(self,axes,spine_type,path,**kwargs):
        """
        - *axes* : the Axes instance containing the spine
        - *spine_type* : a string specifying the spine type
        - *path* : the path instance used to draw the spine

        Valid kwargs are:
        %(Patch)s
        """
        super(Spine,self).__init__(**kwargs)
        self.axes = axes
        self.set_figure(self.axes.figure)
        self.spine_type = spine_type
        self.set_facecolor('none')
        self.set_edgecolor( rcParams['axes.edgecolor'] )
        self.set_linewidth(rcParams['axes.linewidth'])
        self.axis = None

        self.set_zorder(2.5)
        self.set_transform(self.axes.transAxes) # default transform

        # Defer initial position determination. (Not much support for
        # non-rectangular axes is currently implemented, and this lets
        # them pass through the spines machinery without errors.)
        self._position = None
        assert isinstance(path,matplotlib.path.Path)
        self._path = path

        # To support drawing both linear and circular spines, this
        # class implements Patch behavior two ways. If
        # self._patch_type == 'line', behave like a mpatches.PathPatch
        # instance. If self._patch_type == 'circle', behave like a
        # mpatches.Ellipse instance.
        self._patch_type = 'line'

        # Behavior copied from mpatches.Ellipse:
        # Note: This cannot be calculated until this is added to an Axes
        self._patch_transform = mtransforms.IdentityTransform()
    __init__.__doc__ = cbook.dedent(__init__.__doc__) % martist.kwdocd

    def set_patch_circle(self,center,radius):
        """set the spine to be circular"""
        self._patch_type = 'circle'
        self._center = center
        self._width = radius*2
        self._height = radius*2
        self._angle = 0

    def set_patch_line(self):
        """set the spine to be linear"""
        self._patch_type = 'line'

    # Behavior copied from mpatches.Ellipse:
    def _recompute_transform(self):
        """NOTE: This cannot be called until after this has been added
                 to an Axes, otherwise unit conversion will fail. This
                 maxes it very important to call the accessor method and
                 not directly access the transformation member variable.
        """
        assert self._patch_type == 'circle'
        center = (self.convert_xunits(self._center[0]),
                  self.convert_yunits(self._center[1]))
        width = self.convert_xunits(self._width)
        height = self.convert_yunits(self._height)
        self._patch_transform = mtransforms.Affine2D() \
            .scale(width * 0.5, height * 0.5) \
            .rotate_deg(self._angle) \
            .translate(*center)

    def get_patch_transform(self):
        if self._patch_type == 'circle':
            self._recompute_transform()
            return self._patch_transform
        else:
            return super(Spine,self).get_patch_transform()

    def get_path(self):
        return self._path

    def _ensure_position_is_set(self):
        if self._position is None:
            # default position
            self._position = ('outward',0.0) # in points
            self.set_position(self._position)

    def register_axis(self,axis):
        """register an axis

        An axis should be registered with its corresponding spine from
        the Axes instance. This allows the spine to clear any axis
        properties when needed.
        """
        self.axis = axis
        if self.axis is not None:
            self.axis.cla()

    def cla(self):
        'Clear the current spine'
        self._position = None # clear position
        if self.axis is not None:
            self.axis.cla()

    def _calc_offset_transform(self):
        """calculate the offset transform performed by the spine"""
        self._ensure_position_is_set()
        position = self._position
        if cbook.is_string_like(position):
            if position=='center':
                position = ('axes',0.5)
            elif position=='zero':
                position = ('data',0)
        assert len(position)==2, "position should be 2-tuple"
        position_type, amount = position
        assert position_type in ('axes','outward','data')
        if position_type=='outward':
            if amount == 0:
                # short circuit commonest case
                self._spine_transform =  ('identity',mtransforms.IdentityTransform())
            elif self.spine_type in ['left','right','top','bottom']:
                offset_vec = {'left':(-1,0),
                              'right':(1,0),
                              'bottom':(0,-1),
                              'top':(0,1),
                              }[self.spine_type]
                # calculate x and y offset in dots
                offset_x = amount*offset_vec[0]/ 72.0
                offset_y = amount*offset_vec[1]/ 72.0
                self._spine_transform = ('post',
                                         mtransforms.ScaledTranslation(offset_x,offset_y,
                                                                       self.figure.dpi_scale_trans))
            else:
                warnings.warn('unknown spine type "%s": no spine '
                              'offset performed'%self.spine_type)
                self._spine_transform = ('identity',mtransforms.IdentityTransform())
        elif position_type=='axes':
            if self.spine_type in ('left','right'):
                self._spine_transform = ('pre',
                                         mtransforms.Affine2D.from_values(
                    # keep y unchanged, fix x at amount
                    0,0,0,1,amount,0))
            elif self.spine_type in  ('bottom','top'):
                self._spine_transform = ('pre',
                                         mtransforms.Affine2D.from_values(
                    # keep x unchanged, fix y at amount
                    1,0,0,0,0,amount))
            else:
                warnings.warn('unknown spine type "%s": no spine '
                              'offset performed'%self.spine_type)
                self._spine_transform = ('identity',mtransforms.IdentityTransform())
        elif position_type=='data':
            if self.spine_type in ('left','right'):
                self._spine_transform = ('data',
                                         mtransforms.Affine2D().translate(amount,0))
            elif self.spine_type in ('bottom','top'):
                self._spine_transform = ('data',
                                         mtransforms.Affine2D().translate(0,amount))
            else:
                warnings.warn('unknown spine type "%s": no spine '
                              'offset performed'%self.spine_type)
                self._spine_transform =  ('identity',mtransforms.IdentityTransform())

    def set_position(self,position):
        """set the position of the spine

        Spine position is specified by a 2 tuple of (position type,
        amount). The position types are:

        * 'outward' : place the spine out from the data area by the
          specified number of points. (Negative values specify placing the
          spine inward.)

        * 'axes' : place the spine at the specified Axes coordinate (from
          0.0-1.0).

        * 'data' : place the spine at the specified data coordinate.

        Additionally, shorthand notations define a special positions:

        * 'center' -> ('axes',0.5)
        * 'zero' -> ('data', 0.0)

        """
        if position in ('center','zero'):
            # special positions
            pass
        else:
            assert len(position)==2, "position should be 'center' or 2-tuple"
            assert position[0] in ['outward','axes','data']
        self._position = position
        self._calc_offset_transform()

        t = self.get_spine_transform()
        if self.spine_type in ['left','right']:
            t2 = mtransforms.blended_transform_factory(t,
                                                       self.axes.transAxes)
        elif self.spine_type in ['bottom','top']:
            t2 = mtransforms.blended_transform_factory(self.axes.transAxes,
                                                       t)
        self.set_transform(t2)

        if self.axis is not None:
            self.axis.cla()

    def get_position(self):
        """get the spine position"""
        self._ensure_position_is_set()
        return self._position

    def get_spine_transform(self):
        """get the spine transform"""
        self._ensure_position_is_set()
        what, how = self._spine_transform

        if what == 'data':
            # special case data based spine locations
            if self.spine_type in ['left','right']:
                data_xform = self.axes.transScale + \
                             (how+self.axes.transLimits + self.axes.transAxes)
                result = mtransforms.blended_transform_factory(
                    data_xform,self.axes.transData)
            elif self.spine_type in ['top','bottom']:
                data_xform = self.axes.transScale + \
                             (how+self.axes.transLimits + self.axes.transAxes)
                result = mtransforms.blended_transform_factory(
                    self.axes.transData,data_xform)
            else:
                raise ValueError('unknown spine spine_type: %s'%self.spine_type)
            return result

        if self.spine_type in ['left','right']:
            base_transform = self.axes.get_yaxis_transform(which='grid')
        elif self.spine_type in ['top','bottom']:
            base_transform = self.axes.get_xaxis_transform(which='grid')
        else:
            raise ValueError('unknown spine spine_type: %s'%self.spine_type)

        if what=='identity':
            return base_transform
        elif what=='post':
            return base_transform+how
        elif what=='pre':
            return how+base_transform
        else:
            raise ValueError("unknown spine_transform type: %s"%what)

    @classmethod
    def linear_spine(cls, axes, spine_type, **kwargs):
        """
        (staticmethod) Returns a linear :class:`Spine`.
        """
        if spine_type=='left':
            path = mpath.Path([(0.0, 0.0), (0.0, 1.0)])
        elif spine_type=='right':
            path = mpath.Path([(1.0, 0.0), (1.0, 1.0)])
        elif spine_type=='bottom':
            path = mpath.Path([(0.0, 0.0), (1.0, 0.0)])
        elif spine_type=='top':
            path = mpath.Path([(0.0, 1.0), (1.0, 1.0)])
        else:
            raise ValueError('unable to make path for spine "%s"'%spine_type)
        result = cls(axes,spine_type,path,**kwargs)
        return result

    @classmethod
    def circular_spine(cls,axes,center,radius,**kwargs):
        """
        (staticmethod) Returns a circular :class:`Spine`.
        """
        path = mpath.Path.unit_circle()
        spine_type = 'circle'
        result = cls(axes,spine_type,path,**kwargs)
        result.set_patch_circle(center,radius)
        return result

    def set_color(self, c):
        """
        Set the edgecolor.

        ACCEPTS: matplotlib color arg or sequence of rgba tuples

        .. seealso::

            :meth:`set_facecolor`, :meth:`set_edgecolor`
               For setting the edge or face color individually.
        """
        # The facecolor of a spine is always 'none' by default -- let
        # the user change it manually if desired.
        self.set_edgecolor(c)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.