chart_data.py :  » Chart-Report » Pychart » PyChart-1.39 » pychart » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Chart Report » Pychart 
Pychart » PyChart 1.39 » pychart » chart_data.py
#
# Copyright (C) 2000-2005 by Yasushi Saito (yasushi.saito@gmail.com)
# 
# Jockey is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2, or (at your option) any
# later version.
#
# Jockey is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
import pychart_util
import copy
import math

def _convert_item(v, typ, line):
    if typ == "a":
        try:
            i = float(v)
        except ValueError: # non-number
            i = v
        return i
    elif typ == "d":
        try:
            return int(v)
        except ValueError:
            raise ValueError, "Can't convert %s to int; line=%s" % (v, line)
    elif typ == "f":
        try:
            return float(v)
        except ValueError:
            raise ValueError, "Can't convert %s to float; line=%s" % (v, line)
    elif typ == "s":
        return v
    else:
        raise ValueError, "Unknown conversion type, type=%s; line=%s" % (typ,line)
        
def parse_line(line, delim):
    if delim.find("%") < 0:
        return [ _convert_item(item, "a", None) for item in line.split(delim) ]
    
    data = []
    idx = 0 # indexes delim
    ch = 'f'
    sep = ','

    while idx < len(delim):
        if delim[idx] != '%':
            raise ValueError, 'Bad delimitor: "%s"' % delim
        ch = delim[idx+1]
        idx += 2
        sep = ""
        while idx < len(delim) and delim[idx] != '%':
            sep += delim[idx]
            idx += 1

        if sep != "":
            xx = line.split(sep, 1)
        else:
            # reached the end of the delimiter string.
            xx = (line, )
            
        data.append(_convert_item(xx[0], ch, line))
        if len(xx) >= 2:
            line = xx[1]
        else:
            line = ""
            break

    if line != "":
        for item in line.split(sep):
            data.append(_convert_item(item, ch, line))
    return data

def escape_string(str):
    return str.replace("/", "//")

def extract_rows(data, *rows):
    """Extract rows specified in the argument list.

>>> chart_data.extract_rows([[10,20], [30,40], [50,60]], 1, 2)
[[30,40],[50,60]]
"""
    try:
        # for python 2.2
        # return [data[r] for r in rows]
        out = []
        for r in rows:
            out.append(data[r])
        return out
    except IndexError:
        raise IndexError, "data=%s rows=%s" % (data, rows)
    return out

def extract_columns(data, *cols):
    """Extract columns specified in the argument list.

>>> chart_data.extract_columns([[10,20], [30,40], [50,60]], 0)
[[10],[30],[50]]
"""
    out = []
    try:
        # for python 2.2:
        # return [ [r[c] for c in cols] for r in data]
        for r in data:
            col = []
            for c in cols:
                col.append(r[c])
            out.append(col)
    except IndexError:
        raise IndexError, "data=%s col=%s" % (data, col)        
    return out

            
            

def moving_average(data, xcol, ycol, width):
    """Compute the moving average of  YCOL'th column of each sample point
in  DATA. In particular, for each element  I in  DATA,
this function extracts up to  WIDTH*2+1 elements, consisting of
 I itself,  WIDTH elements before  I, and  WIDTH
elements after  I. It then computes the mean of the  YCOL'th
column of these elements, and it composes a two-element sample
consisting of  XCOL'th element and the mean.

>>> data = [[10,20], [20,30], [30,50], [40,70], [50,5]]
... chart_data.moving_average(data, 0, 1, 1)
[(10, 25.0), (20, 33.333333333333336), (30, 50.0), (40, 41.666666666666664), (50, 37.5)]

  The above value actually represents:

[(10, (20+30)/2), (20, (20+30+50)/3), (30, (30+50+70)/3), 
  (40, (50+70+5)/3), (50, (70+5)/2)]

"""

    
    out = []
    try:
        for i in range(len(data)):
            n = 0
            total = 0
            for j in range(i-width, i+width+1):
                if j >= 0 and j < len(data):
                    total += data[j][ycol]
                    n += 1
            out.append((data[i][xcol], float(total) / n))
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycol=%d,width=%d" % (data,xcol,ycol,width)
    
    return out
    
def filter(func, data):
    """Parameter <func> must be a single-argument
    function that takes a sequence (i.e.,
a sample point) and returns a boolean. This procedure calls <func> on
each element in <data> and returns a list comprising elements for
which <func> returns True.

>>> data = [[1,5], [2,10], [3,13], [4,16]]
... chart_data.filter(lambda x: x[1] % 2 == 0, data)
[[2,10], [4,16]].
"""
    
    out = []
    for r in data:
  if func(r):
      out.append(r)
    return out

def transform(func, data):
    """Apply <func> on each element in <data> and return the list
consisting of the return values from <func>.

>>> data = [[10,20], [30,40], [50,60]]
... chart_data.transform(lambda x: [x[0], x[1]+1], data)
[[10, 21], [30, 41], [50, 61]]

"""
    out = []
    for r in data:
        out.append(func(r))
    return out

def aggregate_rows(data, col):
    out = copy.deepcopy(data)
    total = 0
    for r in out:
        total += r[col]
        r[col] = total
    return out

def empty_line_p(s):
    return s.strip() == ""

def _try_open_file(path, mode, error_message):
    try:
        fd = open(path, mode)
    except TypeError:
        fd = path
        if not getattr(fd, "readline", None):
            raise TypeError, error_message + "(got %s)" % str(fd)
    return fd

def _try_close_file(fd, path):
    if fd != path:
        fd.close()
        
def read_csv(path, delim = ','):

    """This function reads comma-separated values from a
    file. Parameter <path> is either a pathname or a file-like object
    that supports the |readline()| method.

    Empty lines and lines
    beginning with "#" are ignored.  Parameter <delim> specifies how
    a line is separated into values. If it does not contain the
    letter "%", then <delim> marks the end of a value.
    Otherwise, this function acts like scanf in C:

chart_data.read_csv('file', '%d,%s:%d')

    Paramter <delim> currently supports
    only three conversion format specifiers:
    "d"(int), "f"(double), and "s"(string)."""

    fd = _try_open_file(path, 'r', 
                        'The first argument must be a pathname or an object that supports readline() method')

    data = []
    line = fd.readline()
    while line != "":
        if line[0] != '#' and not empty_line_p(line):
            data.append(parse_line(line, delim))
        line = fd.readline()

    _try_close_file(fd, path)
    return data

def fread_csv(fd, delim = ','):
    """This function is deprecated. Use read_csv instead."""
    pychart_util.warn("chart_data.fread_csv is deprecated. Use read_csv instead.")
    return read_csv(fd, delim)


def write_csv(path, data):

    """This function writes comma-separated <data> to
    <path>. Parameter <path> is either a pathname or a file-like
    object that supports the |write()| method."""

    fd = _try_open_file(path, 'w',
                        'The first argument must be a pathname or an object that supports write() method')
    for v in data:
        fd.write(",".join([str(x) for x in v]))
        fd.write("\n")
    _try_close_file(fd, path)

def fwrite_csv(fd, delim = ','):
    """This function is deprecated. Use write_csv instead."""
    pychart_util.warn("chart_data.fwrite_csv is deprecated. Use write_csv instead.")
    return write_csv(fd, delim)

def read_str(delim = ',', *lines):
    """This function is similar to read_csv, but it reads data from the
    list of <lines>.

fd = open("foo", "r")
data = chart_data.read_str(",", fd.readlines())"""

    data = []
    for line in lines:
        com = parse_line(line, delim)
        data.append(com)
    return data
    
def func(f, xmin, xmax, step = None):
    """Create sample points from function <f>, which must be a
    single-parameter function that returns a number (e.g., math.sin).
    Parameters <xmin> and <xmax> specify the first and last X values, and
    <step> specifies the sampling interval.

>>> chart_data.func(math.sin, 0, math.pi * 4, math.pi / 2)
[(0, 0.0), (1.5707963267948966, 1.0), (3.1415926535897931, 1.2246063538223773e-16), (4.7123889803846897, -1.0), (6.2831853071795862, -2.4492127076447545e-16), (7.8539816339744828, 1.0), (9.4247779607693793, 3.6738190614671318e-16), (10.995574287564276, -1.0)]

"""
    
    data = []
    x = xmin
    if not step:
        step = (xmax - xmin) / 100.0
    while x < xmax:
        data.append((x, f(x)))
        x += step
    return data

def _nr_data(data, col):
    nr_data = 0
    for d in data:
        nr_data += d[col]
    return nr_data
    
def median(data, freq_col=1):
    """Compute the median of the <freq_col>'th column of the values is <data>.

>>> chart_data.median([(10,20), (20,4), (30,5)], 0)
20
>>> chart_data.median([(10,20), (20,4), (30,5)], 1)
5.
    """
    
    nr_data = _nr_data(data, freq_col)
    median_idx = nr_data / 2
    i = 0
    for d in data:
        i += d[freq_col]
        if i >= median_idx:
            return d
    raise Exception, "??? median ???"

def cut_extremes(data, cutoff_percentage, freq_col=1):
    nr_data = _nr_data(data, freq_col)
    min_idx = nr_data * cutoff_percentage / 100.0
    max_idx = nr_data * (100 - cutoff_percentage) / 100.0
    r = []
    
    i = 0
    for d in data:
        if i < min_idx:
            if i + d[freq_col] >= min_idx:
                x = copy.deepcopy(d)
                x[freq_col] = x[freq_col] - (min_idx - i)
                r.append(x)
            i += d[freq_col]
            continue
  elif i + d[freq_col] >= max_idx:
            if i < max_idx and i + d[freq_col] >= max_idx:
                x = copy.deepcopy(d)
                x[freq_col] = x[freq_col] - (max_idx - i)
                r.append(x)
            break
        i += d[freq_col]
        r.append(d)
    return r

def mean(data, val_col, freq_col):
    nr_data = 0
    sum = 0
    for d in data:
        sum += d[val_col] * d[freq_col]
        nr_data += d[freq_col]
    if nr_data == 0:
  raise IndexError, "data is empty"

    return sum / float(nr_data)

def mean_samples(data, xcol, ycollist):
    """Create a sample list that contains
    the mean of the original list.

>>> chart_data.mean_samples([ [1, 10, 15], [2, 5, 10], [3, 8, 33] ], 0, (1, 2))
[(1, 12.5), (2, 7.5), (3, 20.5)]
"""
    out = []
    numcol = len(ycollist)
    try:
        for elem in data:
            v = 0
            for col in ycollist:
                v += elem[col]
            out.append( (elem[xcol], float(v) / numcol) )
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycollist=%s" % (data,xcol,ycollist)
    
    return out

def stddev_samples(data, xcol, ycollist, delta = 1.0):
    """Create a sample list that contains the mean and standard deviation of the original list. Each element in the returned list contains following values: [MEAN, STDDEV, MEAN - STDDEV*delta, MEAN + STDDEV*delta].

>>> chart_data.stddev_samples([ [1, 10, 15, 12, 15], [2, 5, 10, 5, 10], [3, 32, 33, 35, 36], [4,16,66, 67, 68] ], 0, range(1,5))
[(1, 13.0, 2.1213203435596424, 10.878679656440358, 15.121320343559642), (2, 7.5, 2.5, 5.0, 10.0), (3, 34.0, 1.5811388300841898, 32.418861169915807, 35.581138830084193), (4, 54.25, 22.094965489902897, 32.155034510097103, 76.344965489902904)]
"""
    out = []
    numcol = len(ycollist)
    try:
        for elem in data:
            total = 0
            for col in ycollist:
                total += elem[col]
            mean = float(total) / numcol
            variance = 0
            for col in ycollist:
                variance += (mean - elem[col]) ** 2
            stddev = math.sqrt(variance / numcol) * delta
            out.append( (elem[xcol], mean, stddev, mean-stddev, mean+stddev) )
            
            
            
    except IndexError:
        raise IndexError, "bad data: %s,xcol=%d,ycollist=%s" % (data,xcol,ycollist)
    return out

def nearest_match(data, col, val):
    min_delta = None
    match = None
    
    for d in data:
        if min_delta == None or abs(d[col] - val) < min_delta:
            min_delta = abs(d[col] - val)
            match = d
    pychart_util.warn("XXX ", match)
    return match
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.