iobench.py :  » Database » PyTables » tables-2.1.2 » bench » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » bench » iobench.py
import sys
import subprocess
import numpy
import cPickle
import tables
from time import time

# Size of the NxM array
N = 10; M = 125000

# Name of the dump file
filename = "/tmp/dumpfile.data"

# Function to get the size of a file
def get_filesize():
    sout = subprocess.Popen("sync;du -h %s" % filename, shell=True,
                            stdout=subprocess.PIPE).stdout
    line = [l for l in sout][0]
    return line.split()[0]

# Print out some statistics
def print_stats(explain, tref, tpick):
    ttime = time()-tref
    print "%s %ss.  " %(explain, round(ttime, 3)),
    print "Speed-up over cPickle: %sx" % round(tpick/ttime, 2)
    print "File size:", get_filesize()


# Print some preliminary information
print 'Python version:    %s' % sys.version
print "NumPy version:     %s" % numpy.__version__
print "PyTables version:  %s" % tables.__version__

print "Checking with a %sx%s matrix of float64 elements (%s MB)" % \
      (N, M, round(N*M*8/(1024.*1024),3))

# Start the actual benchmarks


print "***** cPickle (protocol 2) *****"

na = numpy.random.rand(N, M)
tref = time()
f = file(filename, 'w')
cPickle.dump(na, f, 2)
tpickw = time()-tref
f.close()
print "Time for writing: %ss" % round(tpickw, 3)
print "File size:", get_filesize()

tref = time()
f = file(filename, 'r')
nar = cPickle.load(f)
tpickr = time()-tref
print "Time for reading: %ss" % round(tpickr, 3)
f.close()

print "***** PyTables EArray (dump row to row) *****"

na = numpy.random.rand(1, M)
tref = time()
f = tables.openFile(filename, 'w')
a = f.createEArray(f.root, 'array', tables.Float64Atom(), (0, M))
for i in xrange(N):
    a.append(na)
f.close()
print_stats("Time for writing:", tref, tpickw)

tref = time()
f = tables.openFile(filename, 'r')
a = f.root.array
nar = f.root.array[:]
f.close()
print_stats("Time for reading:", tref, tpickr)

print "***** PyTables EArray (dump row to row, compressed with zlib) ******"

na = numpy.random.rand(1, M)
tref = time()
f = tables.openFile(filename, 'w')
a = f.createEArray(f.root, 'array', tables.Float64Atom(), (0, M),
                   filters=tables.Filters(complevel=3, complib='zlib'))
for i in xrange(N):
    a.append(na)
f.close()
print_stats("Time for writing:", tref, tpickw)

tref = time()
f = tables.openFile(filename, 'r')
a = f.root.array
nar = f.root.array[:]
f.close()
print_stats("Time for reading:", tref, tpickr)

print "***** PyTables EArray (dump row to row, compressed with lzo) *****"

na = numpy.random.rand(1, M)
tref = time()
f = tables.openFile(filename, 'w')
a = f.createEArray(f.root, 'array', tables.Float64Atom(), (0, M),
                   filters=tables.Filters(complevel=3, complib='lzo'))
for i in xrange(N):
    a.append(na)
f.close()
print_stats("Time for writing:", tref, tpickw)

tref = time()
f = tables.openFile(filename, 'r')
a = f.root.array
nar = f.root.array[:]
f.close()
print_stats("Time for reading:", tref, tpickr)

print "***** PyTables EArray (complete dump) *****"

na = numpy.random.rand(N, M)
tref = time()
f = tables.openFile(filename, 'w')
a = f.createEArray(f.root, 'array', tables.Float64Atom(), (0, M))
a.append(na)
f.close()
print_stats("Time for writing:", tref, tpickw)

tref = time()
f = tables.openFile(filename, 'r')
a = f.root.array
nar = f.root.array[:]
f.close()
print_stats("Time for reading:", tref, tpickr)

print "***** PyTables Array *****"

na = numpy.random.rand(N, M)
tref = time()
f = tables.openFile(filename, 'w')
a = f.createArray(f.root, 'array', na)
f.close()
print_stats("Time for writing:", tref, tpickw)

tref = time()
f = tables.openFile(filename, 'r')
a = f.root.array
nar = f.root.array[:]
f.close()
print_stats("Time for reading:", tref, tpickr)

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.