sqlite search bench.py :  » Database » PyTables » tables-2.1.2 » bench » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » PyTables 
PyTables » tables 2.1.2 » bench » sqlite-search-bench.py
#!/usr/bin/python
import sqlite
import random
import time
import sys
import os
import os.path
from tables import *
import numarray
from numarray import strings
from numarray import random_array

randomvalues = 0
standarddeviation = 10000
# Initialize the random generator always with the same integer
# in order to have reproductible results
random.seed(19)
random_array.seed(19, 20)

# defaults
psycon = 0
worst = 0

def createNewBenchFile(bfile, verbose):

    class Create(IsDescription):
        nrows   = Int32Col(pos=0)
        irows   = Int32Col(pos=1)
        tfill   = Float64Col(pos=2)
        tidx    = Float64Col(pos=3)
        tcfill  = Float64Col(pos=4)
        tcidx   = Float64Col(pos=5)
        rowsecf = Float64Col(pos=6)
        rowseci = Float64Col(pos=7)
        fsize   = Float64Col(pos=8)
        isize   = Float64Col(pos=9)
        psyco   = BoolCol(pos=10)

    class Search(IsDescription):
        nrows   = Int32Col(pos=0)
        rowsel  = Int32Col(pos=1)
        time1   = Float64Col(pos=2)
        time2   = Float64Col(pos=3)
        tcpu1   = Float64Col(pos=4)
        tcpu2   = Float64Col(pos=5)
        rowsec1 = Float64Col(pos=6)
        rowsec2 = Float64Col(pos=7)
        psyco   = BoolCol(pos=8)

    if verbose:
        print "Creating a new benchfile:", bfile
    # Open the benchmarking file
    bf = openFile(bfile, "w")
    # Create groups
    for recsize in ["sqlite_small"]:
        group = bf.createGroup("/", recsize, recsize+" Group")
        # Attach the row size of table as attribute
        if recsize == "small":
            group._v_attrs.rowsize = 16
        # Create a Table for writing bench
        bf.createTable(group, "create_indexed", Create, "indexed values")
        bf.createTable(group, "create_standard", Create, "standard values")
        # create a group for searching bench
        groupS = bf.createGroup(group, "search", "Search Group")
        # Create Tables for searching
        for mode in ["indexed", "standard"]:
            group = bf.createGroup(groupS, mode, mode+" Group")
            # for searching bench
            #for atom in ["string", "int", "float", "bool"]:
            for atom in ["string", "int", "float"]:
                bf.createTable(group, atom, Search, atom+" bench")
    bf.close()

def createFile(filename, nrows, filters, indexmode, heavy, noise, bfile,
               verbose):

    # Initialize some variables
    t1      = 0.; t2      = 0.
    tcpu1   = 0.; tcpu2   = 0.
    rowsecf = 0.; rowseci = 0.
    size1   = 0.; size2   = 0.


    if indexmode == "standard":
        print "Creating a new database:", dbfile
        instd=os.popen("/usr/local/bin/sqlite "+dbfile, "w")
        CREATESTD="""
CREATE TABLE small (
-- Name         Type            -- Example
---------------------------------------
recnum  INTEGER PRIMARY KEY,  -- 345
var1            char(4),        -- Abronia villosa
var2            INTEGER,        -- 111
var3            FLOAT        --  12.32
);
"""
        CREATEIDX="""
CREATE TABLE small (
-- Name         Type            -- Example
---------------------------------------
recnum  INTEGER PRIMARY KEY,  -- 345
var1            char(4),        -- Abronia villosa
var2            INTEGER,        -- 111
var3            FLOAT        --  12.32
);
CREATE INDEX ivar1 ON small(var1);
CREATE INDEX ivar2 ON small(var2);
CREATE INDEX ivar3 ON small(var3);
"""
        # Creating the table first and indexing afterwards is a bit faster
        instd.write(CREATESTD)
        instd.close()

    conn = sqlite.connect(dbfile)
    cursor = conn.cursor()
    if indexmode == "standard":
        place_holders = ",".join(['%s']*3)
        # Insert rows
        SQL = "insert into small values(NULL, %s)" % place_holders
        time1 = time.time()
        cpu1 = time.clock()
        # This way of filling is to copy the PyTables benchmark
        nrowsbuf = 1000
        minimum = 0
        maximum = nrows
        for i in xrange(0, nrows, nrowsbuf):
            if i+nrowsbuf > nrows:
                j = nrows
            else:
                j = i+nrowsbuf
            if randomvalues:
                var3 = random_array.uniform(minimum, maximum, shape=[j-i])
            else:
                var3 = numarray.arange(i, j, type=numarray.Float64)
                if noise:
                    var3 += random_array.uniform(-3, 3, shape=[j-i])
            var2 = numarray.array(var3, type=numarray.Int32)
            var1 = strings.array(None, shape=[j-i], itemsize=4)
            if not heavy:
                for n in xrange(j-i):
                    var1[n] = str("%.4s" % var2[n])
            for n in xrange(j-i):
                fields = (var1[n], var2[n], var3[n])
                cursor.execute(SQL, fields)
            conn.commit()
        t1 = round(time.time()-time1, 5)
        tcpu1 = round(time.clock()-cpu1, 5)
        rowsecf = nrows/t1
        size1 = os.stat(dbfile)[6]
        print "******** Results for writing nrows = %s" % (nrows), "*********"
        print "Insert time:", t1, ", KRows/s:", round((nrows/10.**3)/t1, 3),
        print ", File size:", round(size1/(1024.*1024.), 3), "MB"

    # Indexem
    if indexmode == "indexed":
        time1 = time.time()
        cpu1 = time.clock()
        if not heavy:
            cursor.execute("CREATE INDEX ivar1 ON small(var1)")
            conn.commit()
        cursor.execute("CREATE INDEX ivar2 ON small(var2)")
        conn.commit()
        cursor.execute("CREATE INDEX ivar3 ON small(var3)")
        conn.commit()
        t2 = round(time.time()-time1, 5)
        tcpu2 = round(time.clock()-cpu1, 5)
        rowseci = nrows/t2
        print "Index time:", t2, ", IKRows/s:", round((nrows/10.**3)/t2, 3),
        size2 = os.stat(dbfile)[6] - size1
        print ", Final size with index:", round(size2/(1024.*1024),3), "MB"

    conn.close()

    # Collect benchmark data
    bf = openFile(bfile,"a")
    recsize = "sqlite_small"
    if indexmode == "indexed":
        table = bf.getNode("/"+recsize+"/create_indexed")
    else:
        table = bf.getNode("/"+recsize+"/create_standard")
    table.row["nrows"] = nrows
    table.row["irows"] = nrows
    table.row["tfill"] = t1
    table.row["tidx"]  = t2
    table.row["tcfill"] = tcpu1
    table.row["tcidx"] = tcpu2
    table.row["psyco"] = psycon
    table.row["rowsecf"] = rowsecf
    table.row["rowseci"] = rowseci
    table.row["fsize"] = size1
    table.row["isize"] = size2
    table.row.append()
    bf.close()

    return

def readFile(dbfile, nrows, indexmode, heavy, dselect, bfile, riter):
    # Connect to the database.
    conn = sqlite.connect(db=dbfile, mode=755)
    # Obtain a cursor
    cursor = conn.cursor()

    #      select count(*), avg(var2)
    SQL1 = """
    select recnum
    from small where var1 = %s
    """
    SQL2 = """
    select recnum
    from small where var2 >= %s and var2 < %s
    """
    SQL3 = """
    select recnum
    from small where var3 >= %s and var3 < %s
    """

    # Open the benchmark database
    bf = openFile(bfile,"a")
    #default values for the case that columns are not indexed
    rowselected = 0
    t2 = 0.
    tcpu2 = 0.
    # Some previous computations for the case of random values
    if randomvalues:
        # algorithm to choose a value separated from mean
#         # If want to select fewer values, select this
#         if nrows/2 > standarddeviation*3:
#             # Choose five standard deviations away from mean value
#             dev = standarddeviation*5
#             #dev = standarddeviation*math.log10(nrows/1000.)

        # This algorithm give place to too asymmetric result values
#         if standarddeviation*10 < nrows/2:
#             # Choose four standard deviations away from mean value
#             dev = standarddeviation*4
#         else:
#             dev = 100
        # Yet Another Algorithm
        if nrows/2 > standarddeviation*10:
            dev = standarddeviation*4.
        elif nrows/2 > standarddeviation:
            dev = standarddeviation*2.
        elif nrows/2 > standarddeviation/10.:
            dev = standarddeviation/10.
        else:
            dev = standarddeviation/100.

        valmax = int(round((nrows/2.)-dev))
        # split the selection range in regular chunks
        if riter > valmax*2:
            riter = valmax*2
        chunksize = (valmax*2/riter)*10
        # Get a list of integers for the intervals
        randlist = range(0, valmax, chunksize)
        randlist.extend(range(nrows-valmax, nrows, chunksize))
        # expand the list ten times so as to use the cache
        randlist = randlist*10
        # shuffle the list
        random.shuffle(randlist)
        # reset the value of chunksize
        chunksize = chunksize/10
        #print "chunksize-->", chunksize
        #randlist.sort();print "randlist-->", randlist
    else:
        chunksize = 3
    if heavy:
        searchmodelist = ["int", "float"]
    else:
        searchmodelist = ["string", "int", "float"]
        
    # Execute queries
    for atom in searchmodelist:
        time2 = 0
        cpu2 = 0
        rowsel = 0
        for i in xrange(riter):
            rnd = random.randrange(nrows)
            time1 = time.time()
            cpu1 = time.clock()
            if atom == "string":
                #cursor.execute(SQL1, "1111")
                cursor.execute(SQL1, str(rnd)[-4:])
            elif atom == "int":
                #cursor.execute(SQL2 % (rnd, rnd+3))
                cursor.execute(SQL2 % (rnd, rnd+dselect))
            elif atom == "float":
                #cursor.execute(SQL3 % (float(rnd), float(rnd+3)))
                cursor.execute(SQL3 % (float(rnd), float(rnd+dselect)))
            else:
                raise ValueError, "atom must take a value in ['string','int','float']"
            if i == 0:
                t1 = time.time() - time1
                tcpu1 = time.clock() - cpu1
            else:
                if indexmode == "indexed":
                    # if indexed, wait until the 5th iteration to take
                    # times (so as to insure that the index is
                    # effectively cached)
                    if i >= 5:
                        time2 += time.time() - time1
                        cpu2 += time.clock() - cpu1
                else:
                    time2 += time.time() - time1
                    time2 += time.clock() - cpu1
        if riter > 1:
            if indexmode == "indexed" and riter >= 5:
                correction = 5
            else:
                correction = 1
            t2 = time2/(riter-correction)
            tcpu2 = cpu2/(riter-correction)

        print "*** Query results for atom = %s, nrows = %s, indexmode = %s ***" % (atom, nrows, indexmode)
        print "Query time:", round(t1,5), ", cached time:", round(t2, 5)
        print "MRows/s:", round((nrows/10.**6)/t1, 3),
        if t2 > 0:
            print ", cached MRows/s:", round((nrows/10.**6)/t2, 3)
        else:
            print

        # Collect benchmark data
        recsize = "sqlite_small"
        tablepath = "/"+recsize+"/search/"+indexmode+"/"+atom
        table = bf.getNode(tablepath)
        table.row["nrows"] = nrows
        table.row["rowsel"] = rowsel
        table.row["time1"] = t1
        table.row["time2"] = t2
        table.row["tcpu1"] = tcpu1
        table.row["tcpu2"] = tcpu2
        table.row["psyco"] = psycon
        table.row["rowsec1"] = nrows/t1
        if t2 > 0:
            table.row["rowsec2"] = nrows/t2
        table.row.append()
        table.flush()  # Flush the data

    # Close the database
    conn.close()
    bf.close()  # the bench database

    return

if __name__=="__main__":
    import sys
    import os.path
    import getopt
    try:
        import psyco
        psyco_imported = 1
    except:
        psyco_imported = 0

    import time

    usage = """usage: %s [-v] [-p] [-R] [-h] [-t] [-r] [-w] [-n nrows] [-b file] [-k riter] [-m indexmode] [-N range] datafile
            -v verbose
            -p use "psyco" if available
            -R use Random values for filling
            -h heavy mode (exclude strings from timings)
            -t worsT searching case (to emulate PyTables worst cases)
            -r only read test
            -w only write test
            -n the number of rows (in krows)
            -b bench filename
            -N introduce (uniform) noise within range into the values
            -d the interval for look values (int, float) at. Default is 3.
            -k number of iterations for reading\n""" % sys.argv[0]

    try:
        opts, pargs = getopt.getopt(sys.argv[1:], 'vpRhtrwn:b:k:m:N:d:')
    except:
        sys.stderr.write(usage)
        sys.exit(0)

    # if we pass too much parameters, abort
    if len(pargs) <> 1:
        sys.stderr.write(usage)
        sys.exit(0)

    # default options
    dselect = 3.
    noise = 0.
    verbose = 0
    heavy = 0
    testread = 1
    testwrite = 1
    usepsyco = 0
    nrows = 1000
    bfile = "sqlite-bench.h5"
    supported_imodes = ["indexed","standard"]
    indexmode = "indexed"
    riter = 2

    # Get the options
    for option in opts:
        if option[0] == '-v':
            verbose = 1
        if option[0] == '-p':
            usepsyco = 1
        elif option[0] == '-R':
            randomvalues = 1
        elif option[0] == '-h':
            heavy = 1
        elif option[0] == '-t':
            worst = 1
        elif option[0] == '-r':
            testwrite = 0
        elif option[0] == '-w':
            testread = 0
        elif option[0] == '-b':
            bfile = option[1]
        elif option[0] == '-N':
            noise = float(option[1])
        elif option[0] == '-m':
            indexmode = option[1]
            if indexmode not in supported_imodes:
                raise ValueError, "Indexmode should be any of '%s' and you passed '%s'" % (supported_imodes, indexmode)
        elif option[0] == '-n':
            nrows = int(float(option[1])*1000)
        elif option[0] == '-d':
            dselect = float(option[1])
        elif option[0] == '-k':
            riter = int(option[1])

    # remaining parameters
    dbfile=pargs[0]

    if worst:
        nrows -= 1  # the worst case

    # Create the benchfile (if needed)
    if not os.path.exists(bfile):
        createNewBenchFile(bfile, verbose)

    if testwrite:
        if psyco_imported and usepsyco:
            psyco.bind(createFile)
            psycon = 1
        createFile(dbfile, nrows, None, indexmode, heavy, noise, bfile,
                   verbose)

    if testread:
        if psyco_imported and usepsyco:
            psyco.bind(readFile)
            psycon = 1
        readFile(dbfile, nrows, indexmode, heavy, dselect, bfile, riter)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.