dictlike.py :  » Database » SQLAlchemy » SQLAlchemy-0.6.0 » examples » vertical » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Database » SQLAlchemy 
SQLAlchemy » SQLAlchemy 0.6.0 » examples » vertical » dictlike.py
"""Mapping a vertical table as a dictionary.

This example illustrates accessing and modifying a "vertical" (or
"properties", or pivoted) table via a dict-like interface.  These are tables
that store free-form object properties as rows instead of columns.  For
example, instead of::

  # A regular ("horizontal") table has columns for 'species' and 'size'
  Table('animal', metadata,
        Column('id', Integer, primary_key=True),
        Column('species', Unicode),
        Column('size', Unicode))

A vertical table models this as two tables: one table for the base or parent
entity, and another related table holding key/value pairs::

  Table('animal', metadata,
        Column('id', Integer, primary_key=True))

  # The properties table will have one row for a 'species' value, and
  # another row for the 'size' value.
  Table('properties', metadata
        Column('animal_id', Integer, ForeignKey('animal.id'),
               primary_key=True),
        Column('key', UnicodeText),
        Column('value', UnicodeText))

Because the key/value pairs in a vertical scheme are not fixed in advance,
accessing them like a Python dict can be very convenient.  The example below
can be used with many common vertical schemas as-is or with minor adaptations.

"""

class VerticalProperty(object):
    """A key/value pair.

    This class models rows in the vertical table.
    """

    def __init__(self, key, value):
        self.key = key
        self.value = value

    def __repr__(self):
        return '<%s %r=%r>' % (self.__class__.__name__, self.key, self.value)


class VerticalPropertyDictMixin(object):
    """Adds obj[key] access to a mapped class.

    This is a mixin class.  It can be inherited from directly, or included
    with multiple inheritence.

    Classes using this mixin must define two class properties::

    _property_type:
      The mapped type of the vertical key/value pair instances.  Will be
      invoked with two positional arugments: key, value

    _property_mapping:
      A string, the name of the Python attribute holding a dict-based
      relationship of _property_type instances.

    Using the VerticalProperty class above as an example,::

      class MyObj(VerticalPropertyDictMixin):
          _property_type = VerticalProperty
          _property_mapping = 'props'

      mapper(MyObj, sometable, properties={
        'props': relationship(VerticalProperty,
                          collection_class=attribute_mapped_collection('key'))})

    Dict-like access to MyObj is proxied through to the 'props' relationship::

      myobj['key'] = 'value'
      # ...is shorthand for:
      myobj.props['key'] = VerticalProperty('key', 'value')

      myobj['key'] = 'updated value']
      # ...is shorthand for:
      myobj.props['key'].value = 'updated value'

      print myobj['key']
      # ...is shorthand for:
      print myobj.props['key'].value

    """

    _property_type = VerticalProperty
    _property_mapping = None

    __map = property(lambda self: getattr(self, self._property_mapping))

    def __getitem__(self, key):
        return self.__map[key].value

    def __setitem__(self, key, value):
        property = self.__map.get(key, None)
        if property is None:
            self.__map[key] = self._property_type(key, value)
        else:
            property.value = value

    def __delitem__(self, key):
        del self.__map[key]

    def __contains__(self, key):
        return key in self.__map

    # Implement other dict methods to taste.  Here are some examples:
    def keys(self):
        return self.__map.keys()

    def values(self):
        return [prop.value for prop in self.__map.values()]

    def items(self):
        return [(key, prop.value) for key, prop in self.__map.items()]

    def __iter__(self):
        return iter(self.keys())


if __name__ == '__main__':
    from sqlalchemy import (MetaData,Table,Column,Integer,Unicode
        ForeignKey, UnicodeText, and_, not_)
    from sqlalchemy.orm import mapper,relationship,create_session
    from sqlalchemy.orm.collections import attribute_mapped_collection

    metadata = MetaData()

    # Here we have named animals, and a collection of facts about them.
    animals = Table('animal', metadata,
                    Column('id', Integer, primary_key=True),
                    Column('name', Unicode(100)))

    facts = Table('facts', metadata,
                  Column('animal_id', Integer, ForeignKey('animal.id'),
                         primary_key=True),
                  Column('key', Unicode(64), primary_key=True),
                  Column('value', UnicodeText, default=None),)

    class AnimalFact(VerticalProperty):
        """A fact about an animal."""

    class Animal(VerticalPropertyDictMixin):
        """An animal.

        Animal facts are available via the 'facts' property or by using
        dict-like accessors on an Animal instance::

          cat['color'] = 'calico'
          # or, equivalently:
          cat.facts['color'] = AnimalFact('color', 'calico')
        """

        _property_type = AnimalFact
        _property_mapping = 'facts'

        def __init__(self, name):
            self.name = name

        def __repr__(self):
            return '<%s %r>' % (self.__class__.__name__, self.name)


    mapper(Animal, animals, properties={
        'facts': relationship(
            AnimalFact, backref='animal',
            collection_class=attribute_mapped_collection('key')),
        })
    mapper(AnimalFact, facts)


    metadata.bind = 'sqlite:///'
    metadata.create_all()
    session = create_session()

    stoat = Animal(u'stoat')
    stoat[u'color'] = u'reddish'
    stoat[u'cuteness'] = u'somewhat'

    # dict-like assignment transparently creates entries in the
    # stoat.facts collection:
    print stoat.facts[u'color']

    session.add(stoat)
    session.flush()
    session.expunge_all()

    critter = session.query(Animal).filter(Animal.name == u'stoat').one()
    print critter[u'color']
    print critter[u'cuteness']

    critter[u'cuteness'] = u'very'

    print 'changing cuteness:'
    metadata.bind.echo = True
    session.flush()
    metadata.bind.echo = False

    marten = Animal(u'marten')
    marten[u'color'] = u'brown'
    marten[u'cuteness'] = u'somewhat'
    session.add(marten)

    shrew = Animal(u'shrew')
    shrew[u'cuteness'] = u'somewhat'
    shrew[u'poisonous-part'] = u'saliva'
    session.add(shrew)

    loris = Animal(u'slow loris')
    loris[u'cuteness'] = u'fairly'
    loris[u'poisonous-part'] = u'elbows'
    session.add(loris)
    session.flush()

    q = (session.query(Animal).
         filter(Animal.facts.any(
           and_(AnimalFact.key == u'color',
                AnimalFact.value == u'reddish'))))
    print 'reddish animals', q.all()

    # Save some typing by wrapping that up in a function:
    with_characteristic = lambda key, value: and_(AnimalFact.key == key,
                                                  AnimalFact.value == value)

    q = (session.query(Animal).
         filter(Animal.facts.any(
           with_characteristic(u'color', u'brown'))))
    print 'brown animals', q.all()

    q = (session.query(Animal).
           filter(not_(Animal.facts.any(
                         with_characteristic(u'poisonous-part', u'elbows')))))
    print 'animals without poisonous-part == elbows', q.all()

    q = (session.query(Animal).
         filter(Animal.facts.any(AnimalFact.value == u'somewhat')))
    print 'any animal with any .value of "somewhat"', q.all()

    # Facts can be queried as well.
    q = (session.query(AnimalFact).
         filter(with_characteristic(u'cuteness', u'very')))
    print 'just the facts', q.all()


    metadata.drop_all()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.