deprecated_graph.py :  » Development » Bazaar » bzr-2.2b3 » bzrlib » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » Bazaar 
Bazaar » bzr 2.2b3 » bzrlib » deprecated_graph.py
# Copyright (C) 2005, 2008 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA


def max_distance(node, ancestors, distances, root_descendants):
    """Calculate the max distance to an ancestor.
    Return None if not all possible ancestors have known distances"""
    best = None
    if node in distances:
        best = distances[node]
    for ancestor in ancestors[node]:
        # skip ancestors we will never traverse:
        if root_descendants is not None and ancestor not in root_descendants:
            continue
        # An ancestor which is not listed in ancestors will never be in
        # distances, so we pretend it never existed.
        if ancestor not in ancestors:
            continue
        if ancestor not in distances:
            return None
        if best is None or distances[ancestor]+1 > best:
            best = distances[ancestor] + 1
    return best


def node_distances(graph, ancestors, start, root_descendants=None):
    """Produce a list of nodes, sorted by distance from a start node.
    This is an algorithm devised by Aaron Bentley, because applying Dijkstra
    backwards seemed too complicated.

    For each node, we walk its descendants.  If all the descendant's ancestors
    have a max-distance-to-start, (excluding ones that can never reach start),
    we calculate their max-distance-to-start, and schedule their descendants.

    So when a node's last parent acquires a distance, it will acquire a
    distance on the next iteration.

    Once we know the max distances for all nodes, we can return a list sorted
    by distance, farthest first.
    """
    distances = {start: 0}
    lines = set([start])
    while len(lines) > 0:
        new_lines = set()
        for line in lines:
            line_descendants = graph[line]
            for descendant in line_descendants:
                distance = max_distance(descendant, ancestors, distances,
                                        root_descendants)
                if distance is None:
                    continue
                distances[descendant] = distance
                new_lines.add(descendant)
        lines = new_lines
    return distances

def nodes_by_distance(distances):
    """Return a list of nodes sorted by distance"""
    def by_distance(n):
        return distances[n],n

    node_list = distances.keys()
    node_list.sort(key=by_distance, reverse=True)
    return node_list

def select_farthest(distances, common):
    """Return the farthest common node, or None if no node qualifies."""
    node_list = nodes_by_distance(distances)
    for node in node_list:
        if node in common:
            return node

def all_descendants(descendants, start):
    """Produce a set of all descendants of the start node.
    The input is a map of node->list of descendants for a graph encompassing
    start.
    """
    result = set()
    lines = set([start])
    while len(lines) > 0:
        new_lines = set()
        for line in lines:
            if line not in descendants:
                continue
            for descendant in descendants[line]:
                if descendant in result:
                    continue
                result.add(descendant)
                new_lines.add(descendant)
        lines = new_lines
    return result


class Graph(object):
    """A graph object which can memoise and cache results for performance."""

    def __init__(self):
        super(Graph, self).__init__()
        self.roots = set([])
        self.ghosts = set([])
        self._graph_ancestors = {}
        self._graph_descendants = {}

    def add_ghost(self, node_id):
        """Add a ghost to the graph."""
        self.ghosts.add(node_id)
        self._ensure_descendant(node_id)

    def add_node(self, node_id, parent_ids):
        """Add node_id to the graph with parent_ids as its parents."""
        if len(parent_ids) == 0:
            self.roots.add(node_id)
        self._graph_ancestors[node_id] = list(parent_ids)
        self._ensure_descendant(node_id)
        for parent in parent_ids:
            self._ensure_descendant(parent)
            self._graph_descendants[parent][node_id] = 1

    def _ensure_descendant(self, node_id):
        """Ensure that a descendant lookup for node_id will work."""
        if not node_id in self._graph_descendants:
            self._graph_descendants[node_id] = {}

    def get_ancestors(self):
        """Return a dictionary of graph node:ancestor_list entries."""
        return dict(self._graph_ancestors.items())

    def get_ancestry(self, node_id, topo_sorted=True):
        """Return the inclusive ancestors of node_id in topological order."""
        # maybe optimise this ?
        from bzrlib.tsort import topo_sort
        result = {}
        pending = set([node_id])
        while len(pending):
            current = pending.pop()
            parents = self._graph_ancestors[current]
            parents = [parent for parent in parents if parent not in self.ghosts]
            result[current] = parents
            for parent in parents:
                if parent not in result and parent not in pending:
                    pending.add(parent)
        if not topo_sorted:
            return result.keys()
        return topo_sort(result.items())

    def get_descendants(self):
        """Return a dictionary of graph node:child_node:distance entries."""
        return dict(self._graph_descendants.items())
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.