# Copyright (C) 2009, 2010 Canonical Ltd
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
"""Tests for the StaticTuple type."""
import cPickle
import gc
import sys
from bzrlib import (
_static_tuple_py,
debug,
errors,
osutils,
static_tuple,
tests,
)
def load_tests(standard_tests, module, loader):
"""Parameterize tests for all versions of groupcompress."""
global compiled_static_tuple_feature
suite, compiled_static_tuple_feature = tests.permute_tests_for_extension(
standard_tests, loader, 'bzrlib._static_tuple_py',
'bzrlib._static_tuple_c')
return suite
class _Meliae(tests.Feature):
def _probe(self):
try:
from meliae import scanner
except ImportError:
return False
return True
def feature_name(self):
return "Meliae - python memory debugger"
Meliae = _Meliae()
class TestStaticTuple(tests.TestCase):
def assertRefcount(self, count, obj):
"""Assert that the refcount for obj is what we expect.
Note that this automatically adjusts for the fact that calling
assertRefcount actually creates a new pointer, as does calling
sys.getrefcount. So pass the expected value *before* the call.
"""
# I don't understand why it is getrefcount()-3 here, but it seems to be
# correct. If I check in the calling function, with:
# self.assertEqual(count, sys.getrefcount(obj)-1)
# Then it works fine. Something about passing it to assertRefcount is
# actually double-incrementing (and decrementing) the refcount
self.assertEqual(count, sys.getrefcount(obj)-3)
def test_create(self):
k = self.module.StaticTuple('foo')
k = self.module.StaticTuple('foo', 'bar')
def test_create_bad_args(self):
args_256 = ['a']*256
# too many args
self.assertRaises(TypeError, self.module.StaticTuple, *args_256)
args_300 = ['a']*300
self.assertRaises(TypeError, self.module.StaticTuple, *args_300)
# not a string
self.assertRaises(TypeError, self.module.StaticTuple, object())
def test_concat(self):
st1 = self.module.StaticTuple('foo')
st2 = self.module.StaticTuple('bar')
st3 = self.module.StaticTuple('foo', 'bar')
st4 = st1 + st2
self.assertEqual(st3, st4)
self.assertIsInstance(st4, self.module.StaticTuple)
def test_concat_with_tuple(self):
st1 = self.module.StaticTuple('foo')
t2 = ('bar',)
st3 = self.module.StaticTuple('foo', 'bar')
st4 = self.module.StaticTuple('bar', 'foo')
st5 = st1 + t2
st6 = t2 + st1
self.assertEqual(st3, st5)
self.assertIsInstance(st5, self.module.StaticTuple)
self.assertEqual(st4, st6)
if self.module is _static_tuple_py:
# _static_tuple_py has StaticTuple(tuple), so tuple thinks it
# already knows how to concatenate, as such we can't "inject" our
# own concatenation...
self.assertIsInstance(st6, tuple)
else:
self.assertIsInstance(st6, self.module.StaticTuple)
def test_concat_with_bad_tuple(self):
st1 = self.module.StaticTuple('foo')
t2 = (object(),)
# Using st1.__add__ doesn't give the same results as doing the '+' form
self.assertRaises(TypeError, lambda: st1 + t2)
def test_concat_with_non_tuple(self):
st1 = self.module.StaticTuple('foo')
self.assertRaises(TypeError, lambda: st1 + 10)
def test_as_tuple(self):
k = self.module.StaticTuple('foo')
t = k.as_tuple()
self.assertEqual(('foo',), t)
self.assertIsInstance(t, tuple)
self.assertFalse(isinstance(t, self.module.StaticTuple))
k = self.module.StaticTuple('foo', 'bar')
t = k.as_tuple()
self.assertEqual(('foo', 'bar'), t)
k2 = self.module.StaticTuple(1, k)
t = k2.as_tuple()
self.assertIsInstance(t, tuple)
# For pickling to work, we need to keep the sub-items as StaticTuple so
# that it knows that they also need to be converted.
self.assertIsInstance(t[1], self.module.StaticTuple)
self.assertEqual((1, ('foo', 'bar')), t)
def test_as_tuples(self):
k1 = self.module.StaticTuple('foo', 'bar')
t = static_tuple.as_tuples(k1)
self.assertIsInstance(t, tuple)
self.assertEqual(('foo', 'bar'), t)
k2 = self.module.StaticTuple(1, k1)
t = static_tuple.as_tuples(k2)
self.assertIsInstance(t, tuple)
self.assertIsInstance(t[1], tuple)
self.assertEqual((1, ('foo', 'bar')), t)
mixed = (1, k1)
t = static_tuple.as_tuples(mixed)
self.assertIsInstance(t, tuple)
self.assertIsInstance(t[1], tuple)
self.assertEqual((1, ('foo', 'bar')), t)
def test_len(self):
k = self.module.StaticTuple()
self.assertEqual(0, len(k))
k = self.module.StaticTuple('foo')
self.assertEqual(1, len(k))
k = self.module.StaticTuple('foo', 'bar')
self.assertEqual(2, len(k))
k = self.module.StaticTuple('foo', 'bar', 'b', 'b', 'b', 'b', 'b')
self.assertEqual(7, len(k))
args = ['foo']*255
k = self.module.StaticTuple(*args)
self.assertEqual(255, len(k))
def test_hold_other_static_tuples(self):
k = self.module.StaticTuple('foo', 'bar')
k2 = self.module.StaticTuple(k, k)
self.assertEqual(2, len(k2))
self.assertIs(k, k2[0])
self.assertIs(k, k2[1])
def test_getitem(self):
k = self.module.StaticTuple('foo', 'bar', 'b', 'b', 'b', 'b', 'z')
self.assertEqual('foo', k[0])
self.assertEqual('foo', k[0])
self.assertEqual('foo', k[0])
self.assertEqual('z', k[6])
self.assertEqual('z', k[-1])
self.assertRaises(IndexError, k.__getitem__, 7)
self.assertRaises(IndexError, k.__getitem__, 256+7)
self.assertRaises(IndexError, k.__getitem__, 12024)
# Python's [] resolver handles the negative arguments, so we can't
# really test StaticTuple_item() with negative values.
self.assertRaises(TypeError, k.__getitem__, 'not-an-int')
self.assertRaises(TypeError, k.__getitem__, '5')
def test_refcount(self):
f = 'fo' + 'oo'
num_refs = sys.getrefcount(f) - 1 #sys.getrefcount() adds one
k = self.module.StaticTuple(f)
self.assertRefcount(num_refs + 1, f)
b = k[0]
self.assertRefcount(num_refs + 2, f)
b = k[0]
self.assertRefcount(num_refs + 2, f)
c = k[0]
self.assertRefcount(num_refs + 3, f)
del b, c
self.assertRefcount(num_refs + 1, f)
del k
self.assertRefcount(num_refs, f)
def test__repr__(self):
k = self.module.StaticTuple('foo', 'bar', 'baz', 'bing')
self.assertEqual("StaticTuple('foo', 'bar', 'baz', 'bing')", repr(k))
def assertCompareEqual(self, k1, k2):
self.assertTrue(k1 == k2)
self.assertTrue(k1 <= k2)
self.assertTrue(k1 >= k2)
self.assertFalse(k1 != k2)
self.assertFalse(k1 < k2)
self.assertFalse(k1 > k2)
def test_holds_None(self):
k1 = self.module.StaticTuple(None)
# You cannot subclass None anyway
def test_holds_int(self):
k1 = self.module.StaticTuple(1)
class subint(int):
pass
# But not a subclass, because subint could introduce refcycles
self.assertRaises(TypeError, self.module.StaticTuple, subint(2))
def test_holds_long(self):
k1 = self.module.StaticTuple(2L**65)
class sublong(long):
pass
# But not a subclass
self.assertRaises(TypeError, self.module.StaticTuple, sublong(1))
def test_holds_float(self):
k1 = self.module.StaticTuple(1.2)
class subfloat(float):
pass
self.assertRaises(TypeError, self.module.StaticTuple, subfloat(1.5))
def test_holds_str(self):
k1 = self.module.StaticTuple('astring')
class substr(str):
pass
self.assertRaises(TypeError, self.module.StaticTuple, substr('a'))
def test_holds_unicode(self):
k1 = self.module.StaticTuple(u'\xb5')
class subunicode(unicode):
pass
self.assertRaises(TypeError, self.module.StaticTuple,
subunicode(u'\xb5'))
def test_hold_bool(self):
k1 = self.module.StaticTuple(True)
k2 = self.module.StaticTuple(False)
# Cannot subclass bool
def test_compare_same_obj(self):
k1 = self.module.StaticTuple('foo', 'bar')
self.assertCompareEqual(k1, k1)
k2 = self.module.StaticTuple(k1, k1)
self.assertCompareEqual(k2, k2)
k3 = self.module.StaticTuple('foo', 1, None, u'\xb5', 1.2, 2**65, True,
k1)
self.assertCompareEqual(k3, k3)
def test_compare_equivalent_obj(self):
k1 = self.module.StaticTuple('foo', 'bar')
k2 = self.module.StaticTuple('foo', 'bar')
self.assertCompareEqual(k1, k2)
k3 = self.module.StaticTuple(k1, k2)
k4 = self.module.StaticTuple(k2, k1)
self.assertCompareEqual(k1, k2)
k5 = self.module.StaticTuple('foo', 1, None, u'\xb5', 1.2, 2**65, True,
k1)
k6 = self.module.StaticTuple('foo', 1, None, u'\xb5', 1.2, 2**65, True,
k1)
self.assertCompareEqual(k5, k6)
k7 = self.module.StaticTuple(None)
k8 = self.module.StaticTuple(None)
self.assertCompareEqual(k7, k8)
def test_compare_similar_obj(self):
k1 = self.module.StaticTuple('foo' + ' bar', 'bar' + ' baz')
k2 = self.module.StaticTuple('fo' + 'o bar', 'ba' + 'r baz')
self.assertCompareEqual(k1, k2)
k3 = self.module.StaticTuple('foo ' + 'bar', 'bar ' + 'baz')
k4 = self.module.StaticTuple('f' + 'oo bar', 'b' + 'ar baz')
k5 = self.module.StaticTuple(k1, k2)
k6 = self.module.StaticTuple(k3, k4)
self.assertCompareEqual(k5, k6)
def assertCompareDifferent(self, k_small, k_big):
self.assertFalse(k_small == k_big)
self.assertFalse(k_small >= k_big)
self.assertFalse(k_small > k_big)
self.assertTrue(k_small != k_big)
self.assertTrue(k_small <= k_big)
self.assertTrue(k_small < k_big)
def assertCompareNoRelation(self, k1, k2):
"""Run the comparison operators, make sure they do something.
However, we don't actually care what comes first or second. This is
stuff like cross-class comparisons. We don't want to segfault/raise an
exception, but we don't care about the sort order.
"""
self.assertFalse(k1 == k2)
self.assertTrue(k1 != k2)
# Do the comparison, but we don't care about the result
k1 >= k2
k1 > k2
k1 <= k2
k1 < k2
def test_compare_vs_none(self):
k1 = self.module.StaticTuple('baz', 'bing')
self.assertCompareDifferent(None, k1)
def test_compare_cross_class(self):
k1 = self.module.StaticTuple('baz', 'bing')
self.assertCompareNoRelation(10, k1)
self.assertCompareNoRelation('baz', k1)
def test_compare_all_different_same_width(self):
k1 = self.module.StaticTuple('baz', 'bing')
k2 = self.module.StaticTuple('foo', 'bar')
self.assertCompareDifferent(k1, k2)
k3 = self.module.StaticTuple(k1, k2)
k4 = self.module.StaticTuple(k2, k1)
self.assertCompareDifferent(k3, k4)
k5 = self.module.StaticTuple(1)
k6 = self.module.StaticTuple(2)
self.assertCompareDifferent(k5, k6)
k7 = self.module.StaticTuple(1.2)
k8 = self.module.StaticTuple(2.4)
self.assertCompareDifferent(k7, k8)
k9 = self.module.StaticTuple(u's\xb5')
k10 = self.module.StaticTuple(u's\xe5')
self.assertCompareDifferent(k9, k10)
def test_compare_some_different(self):
k1 = self.module.StaticTuple('foo', 'bar')
k2 = self.module.StaticTuple('foo', 'zzz')
self.assertCompareDifferent(k1, k2)
k3 = self.module.StaticTuple(k1, k1)
k4 = self.module.StaticTuple(k1, k2)
self.assertCompareDifferent(k3, k4)
k5 = self.module.StaticTuple('foo', None)
self.assertCompareDifferent(k5, k1)
self.assertCompareDifferent(k5, k2)
def test_compare_diff_width(self):
k1 = self.module.StaticTuple('foo')
k2 = self.module.StaticTuple('foo', 'bar')
self.assertCompareDifferent(k1, k2)
k3 = self.module.StaticTuple(k1)
k4 = self.module.StaticTuple(k1, k2)
self.assertCompareDifferent(k3, k4)
def test_compare_different_types(self):
k1 = self.module.StaticTuple('foo', 'bar')
k2 = self.module.StaticTuple('foo', 1, None, u'\xb5', 1.2, 2**65, True,
k1)
self.assertCompareNoRelation(k1, k2)
k3 = self.module.StaticTuple('foo')
self.assertCompareDifferent(k3, k1)
k4 = self.module.StaticTuple(None)
self.assertCompareDifferent(k4, k1)
k5 = self.module.StaticTuple(1)
self.assertCompareNoRelation(k1, k5)
def test_compare_to_tuples(self):
k1 = self.module.StaticTuple('foo')
self.assertCompareEqual(k1, ('foo',))
self.assertCompareEqual(('foo',), k1)
self.assertCompareDifferent(k1, ('foo', 'bar'))
self.assertCompareDifferent(k1, ('foo', 10))
k2 = self.module.StaticTuple('foo', 'bar')
self.assertCompareEqual(k2, ('foo', 'bar'))
self.assertCompareEqual(('foo', 'bar'), k2)
self.assertCompareDifferent(k2, ('foo', 'zzz'))
self.assertCompareDifferent(('foo',), k2)
self.assertCompareDifferent(('foo', 'aaa'), k2)
self.assertCompareDifferent(('baz', 'bing'), k2)
self.assertCompareDifferent(('foo', 10), k2)
k3 = self.module.StaticTuple(k1, k2)
self.assertCompareEqual(k3, (('foo',), ('foo', 'bar')))
self.assertCompareEqual((('foo',), ('foo', 'bar')), k3)
self.assertCompareEqual(k3, (k1, ('foo', 'bar')))
self.assertCompareEqual((k1, ('foo', 'bar')), k3)
def test_compare_mixed_depths(self):
stuple = self.module.StaticTuple
k1 = stuple(stuple('a',), stuple('b',))
k2 = stuple(stuple(stuple('c',), stuple('d',)),
stuple('b',))
# This requires comparing a StaticTuple to a 'string', and then
# interpreting that value in the next higher StaticTuple. This used to
# generate a PyErr_BadIternalCall. We now fall back to *something*.
self.assertCompareNoRelation(k1, k2)
def test_hash(self):
k = self.module.StaticTuple('foo')
self.assertEqual(hash(k), hash(('foo',)))
k = self.module.StaticTuple('foo', 'bar', 'baz', 'bing')
as_tuple = ('foo', 'bar', 'baz', 'bing')
self.assertEqual(hash(k), hash(as_tuple))
x = {k: 'foo'}
# Because k == , it replaces the slot, rather than having both
# present in the dict.
self.assertEqual('foo', x[as_tuple])
x[as_tuple] = 'bar'
self.assertEqual({as_tuple: 'bar'}, x)
k2 = self.module.StaticTuple(k)
as_tuple2 = (('foo', 'bar', 'baz', 'bing'),)
self.assertEqual(hash(k2), hash(as_tuple2))
k3 = self.module.StaticTuple('foo', 1, None, u'\xb5', 1.2, 2**65, True,
k)
as_tuple3 = ('foo', 1, None, u'\xb5', 1.2, 2**65, True, k)
self.assertEqual(hash(as_tuple3), hash(k3))
def test_slice(self):
k = self.module.StaticTuple('foo', 'bar', 'baz', 'bing')
self.assertEqual(('foo', 'bar'), k[:2])
self.assertEqual(('baz',), k[2:-1])
try:
val = k[::2]
except TypeError:
# C implementation raises a TypeError, we don't need the
# implementation yet, so allow this to pass
pass
else:
# Python implementation uses a regular Tuple, so make sure it gives
# the right result
self.assertEqual(('foo', 'baz'), val)
def test_referents(self):
# We implement tp_traverse so that things like 'meliae' can measure the
# amount of referenced memory. Unfortunately gc.get_referents() first
# checks the IS_GC flag before it traverses anything. We could write a
# helper func, but that won't work for the generic implementation...
self.requireFeature(Meliae)
from meliae import scanner
strs = ['foo', 'bar', 'baz', 'bing']
k = self.module.StaticTuple(*strs)
if self.module is _static_tuple_py:
refs = strs + [self.module.StaticTuple]
else:
refs = strs
self.assertEqual(sorted(refs), sorted(scanner.get_referents(k)))
def test_nested_referents(self):
self.requireFeature(Meliae)
from meliae import scanner
strs = ['foo', 'bar', 'baz', 'bing']
k1 = self.module.StaticTuple(*strs[:2])
k2 = self.module.StaticTuple(*strs[2:])
k3 = self.module.StaticTuple(k1, k2)
refs = [k1, k2]
if self.module is _static_tuple_py:
refs.append(self.module.StaticTuple)
self.assertEqual(sorted(refs),
sorted(scanner.get_referents(k3)))
def test_empty_is_singleton(self):
key = self.module.StaticTuple()
self.assertIs(key, self.module._empty_tuple)
def test_intern(self):
unique_str1 = 'unique str ' + osutils.rand_chars(20)
unique_str2 = 'unique str ' + osutils.rand_chars(20)
key = self.module.StaticTuple(unique_str1, unique_str2)
self.assertFalse(key in self.module._interned_tuples)
key2 = self.module.StaticTuple(unique_str1, unique_str2)
self.assertEqual(key, key2)
self.assertIsNot(key, key2)
key3 = key.intern()
self.assertIs(key, key3)
self.assertTrue(key in self.module._interned_tuples)
self.assertEqual(key, self.module._interned_tuples[key])
key2 = key2.intern()
self.assertIs(key, key2)
def test__c_intern_handles_refcount(self):
if self.module is _static_tuple_py:
return # Not applicable
unique_str1 = 'unique str ' + osutils.rand_chars(20)
unique_str2 = 'unique str ' + osutils.rand_chars(20)
key = self.module.StaticTuple(unique_str1, unique_str2)
self.assertRefcount(1, key)
self.assertFalse(key in self.module._interned_tuples)
self.assertFalse(key._is_interned())
key2 = self.module.StaticTuple(unique_str1, unique_str2)
self.assertRefcount(1, key)
self.assertRefcount(1, key2)
self.assertEqual(key, key2)
self.assertIsNot(key, key2)
key3 = key.intern()
self.assertIs(key, key3)
self.assertTrue(key in self.module._interned_tuples)
self.assertEqual(key, self.module._interned_tuples[key])
# key and key3, but we 'hide' the one in _interned_tuples
self.assertRefcount(2, key)
del key3
self.assertRefcount(1, key)
self.assertTrue(key._is_interned())
self.assertRefcount(1, key2)
key3 = key2.intern()
# key3 now points to key as well, and *not* to key2
self.assertRefcount(2, key)
self.assertRefcount(1, key2)
self.assertIs(key, key3)
self.assertIsNot(key3, key2)
del key2
del key3
self.assertRefcount(1, key)
def test__c_keys_are_not_immortal(self):
if self.module is _static_tuple_py:
return # Not applicable
unique_str1 = 'unique str ' + osutils.rand_chars(20)
unique_str2 = 'unique str ' + osutils.rand_chars(20)
key = self.module.StaticTuple(unique_str1, unique_str2)
self.assertFalse(key in self.module._interned_tuples)
self.assertRefcount(1, key)
key = key.intern()
self.assertRefcount(1, key)
self.assertTrue(key in self.module._interned_tuples)
self.assertTrue(key._is_interned())
del key
# Create a new entry, which would point to the same location
key = self.module.StaticTuple(unique_str1, unique_str2)
self.assertRefcount(1, key)
# This old entry in _interned_tuples should be gone
self.assertFalse(key in self.module._interned_tuples)
self.assertFalse(key._is_interned())
def test__c_has_C_API(self):
if self.module is _static_tuple_py:
return
self.assertIsNot(None, self.module._C_API)
def test_from_sequence_tuple(self):
st = self.module.StaticTuple.from_sequence(('foo', 'bar'))
self.assertIsInstance(st, self.module.StaticTuple)
self.assertEqual(('foo', 'bar'), st)
def test_from_sequence_str(self):
st = self.module.StaticTuple.from_sequence('foo')
self.assertIsInstance(st, self.module.StaticTuple)
self.assertEqual(('f', 'o', 'o'), st)
def test_from_sequence_list(self):
st = self.module.StaticTuple.from_sequence(['foo', 'bar'])
self.assertIsInstance(st, self.module.StaticTuple)
self.assertEqual(('foo', 'bar'), st)
def test_from_sequence_static_tuple(self):
st = self.module.StaticTuple('foo', 'bar')
st2 = self.module.StaticTuple.from_sequence(st)
# If the source is a StaticTuple already, we return the exact object
self.assertIs(st, st2)
def test_from_sequence_not_sequence(self):
self.assertRaises(TypeError,
self.module.StaticTuple.from_sequence, object())
self.assertRaises(TypeError,
self.module.StaticTuple.from_sequence, 10)
def test_from_sequence_incorrect_args(self):
self.assertRaises(TypeError,
self.module.StaticTuple.from_sequence, object(), 'a')
self.assertRaises(TypeError,
self.module.StaticTuple.from_sequence, foo='a')
def test_from_sequence_iterable(self):
st = self.module.StaticTuple.from_sequence(iter(['foo', 'bar']))
self.assertIsInstance(st, self.module.StaticTuple)
self.assertEqual(('foo', 'bar'), st)
def test_from_sequence_generator(self):
def generate_tuple():
yield 'foo'
yield 'bar'
st = self.module.StaticTuple.from_sequence(generate_tuple())
self.assertIsInstance(st, self.module.StaticTuple)
self.assertEqual(('foo', 'bar'), st)
def test_pickle(self):
st = self.module.StaticTuple('foo', 'bar')
pickled = cPickle.dumps(st)
unpickled = cPickle.loads(pickled)
self.assertEqual(unpickled, st)
def test_pickle_empty(self):
st = self.module.StaticTuple()
pickled = cPickle.dumps(st)
unpickled = cPickle.loads(pickled)
self.assertIs(st, unpickled)
def test_pickle_nested(self):
st = self.module.StaticTuple('foo', self.module.StaticTuple('bar'))
pickled = cPickle.dumps(st)
unpickled = cPickle.loads(pickled)
self.assertEqual(unpickled, st)
def test_static_tuple_thunk(self):
# Make sure the right implementation is available from
# bzrlib.static_tuple.StaticTuple.
if self.module is _static_tuple_py:
if compiled_static_tuple_feature.available():
# We will be using the C version
return
self.assertIs(static_tuple.StaticTuple,
self.module.StaticTuple)
class TestEnsureStaticTuple(tests.TestCase):
def test_is_static_tuple(self):
st = static_tuple.StaticTuple('foo')
st2 = static_tuple.expect_static_tuple(st)
self.assertIs(st, st2)
def test_is_tuple(self):
t = ('foo',)
st = static_tuple.expect_static_tuple(t)
self.assertIsInstance(st, static_tuple.StaticTuple)
self.assertEqual(t, st)
def test_flagged_is_static_tuple(self):
debug.debug_flags.add('static_tuple')
st = static_tuple.StaticTuple('foo')
st2 = static_tuple.expect_static_tuple(st)
self.assertIs(st, st2)
def test_flagged_is_tuple(self):
debug.debug_flags.add('static_tuple')
t = ('foo',)
self.assertRaises(TypeError, static_tuple.expect_static_tuple, t)
|