# ----------------------------------------------------------------------------
# pyglet
# Copyright (c) 2006-2008 Alex Holkner
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in
# the documentation and/or other materials provided with the
# distribution.
# * Neither the name of pyglet nor the names of its
# contributors may be used to endorse or promote products
# derived from this software without specific prior written
# permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
# ----------------------------------------------------------------------------
'''Windowing and user-interface events.
This module allows applications to create and display windows with an
OpenGL context. Windows can be created with a variety of border styles
or set fullscreen.
You can register event handlers for keyboard, mouse and window events.
For games and kiosks you can also restrict the input to your windows,
for example disabling users from switchingawaytheapplication import
with certain key combinations or capturing and hiding the mouse.
Getting started
---------------
Call the Window constructor to create a new window::
from pyglet.window import Window
win = Window(width=640, height=480)
Attach your own event handlers::
@win.event
def on_key_press(symbol, modifiers):
# ... handle this event ...
Place drawing code for the window within the `Window.on_draw` event handler::
@win.event
def on_draw():
# ... drawing code ...
Call `pyglet.app.run` to enter the main event loop (by default, this
returns when all open windows are closed)::
from pyglet import app
app.run()
Creating a game window
----------------------
Use `Window.set_exclusive_mouse` to hide the mouse cursor and receive relative
mouse movement events. Specify ``fullscreen=True`` as a keyword argument to
the `Window` constructor to render to the entire screen rather than opening a
window::
win = Window(fullscreen=True)
win.set_exclusive_mouse()
Working with multiple screens
-----------------------------
By default, fullscreen windows are opened on the primary display (typically
set by the user in their operating system settings). You can retrieve a list
of attached screens and select one manually if you prefer. This is useful for
opening a fullscreen window on each screen::
display = window.get_platform().get_default_display()
screens = display.get_screens()
windows = []
for screen in screens:
windows.append(window.Window(fullscreen=True, screen=screen))
Specifying a screen has no effect if the window is not fullscreen.
Specifying the OpenGL context properties
----------------------------------------
Each window has its own context which is created when the window is created.
You can specify the properties of the context before it is created
by creating a "template" configuration::
from pyglet import gl
# Create template config
config = gl.Config()
config.stencil_size = 8
config.aux_buffers = 4
# Create a window using this config
win = window.Window(config=config)
To determine if a given configuration is supported, query the screen (see
above, "Working with multiple screens")::
configs = screen.get_matching_configs(config)
if not configs:
# ... config is not supported
else:
win = window.Window(config=configs[0])
'''
__docformat__ = 'restructuredtext'
__version__ = '$Id: __init__.py 2496 2009-08-19 01:17:30Z benjamin.coder.smith $'
import pprint
import sys
import pyglet
from pyglet import gl
from pyglet.gl import gl_info
from pyglet.event import EventDispatcher
import pyglet.window.key
class WindowException(Exception):
'''The root exception for all window-related errors.'''
pass
class NoSuchDisplayException(WindowException):
'''An exception indicating the requested display is not available.'''
pass
class NoSuchConfigException(WindowException):
'''An exception indicating the requested configuration is not
available.'''
pass
class MouseCursorException(WindowException):
'''The root exception for all mouse cursor-related errors.'''
pass
class Platform(object):
'''Operating-system-level functionality.
The platform instance can only be obtained with `get_platform`. Use
the platform to obtain a `Display` instance.
'''
def get_display(self, name):
'''Get a display device by name.
This is meaningful only under X11, where the `name` is a
string including the host name and display number; for example
``"localhost:1"``.
On platforms other than X11, `name` is ignored and the default
display is returned. pyglet does not support multiple multiple
video devices on Windows or OS X. If more than one device is
attached, they will appear as a single virtual device comprising
all the attached screens.
:Parameters:
`name` : str
The name of the display to connect to.
:rtype: `Display`
'''
return get_default_display()
def get_default_display(self):
'''Get the default display device.
:rtype: `Display`
'''
raise NotImplementedError('abstract')
class Display(object):
'''A display device supporting one or more screens.
Use `Platform.get_display` or `Platform.get_default_display` to obtain
an instance of this class. Use a display to obtain `Screen` instances.
'''
def __init__(self):
from pyglet import app
app.displays.add(self)
def get_screens(self):
'''Get the available screens.
A typical multi-monitor workstation comprises one `Display` with
multiple `Screen` s. This method returns a list of screens which
can be enumerated to select one for full-screen display.
For the purposes of creating an OpenGL config, the default screen
will suffice.
:rtype: list of `Screen`
'''
raise NotImplementedError('abstract')
def get_default_screen(self):
'''Get the default screen as specified by the user's operating system
preferences.
:rtype: `Screen`
'''
return self.get_screens()[0]
def get_windows(self):
'''Get the windows currently attached to this display.
:rtype: sequence of `Window`
'''
from pyglet import app
return [window for window in app.windows if window.display is self]
class Screen(object):
'''A virtual monitor that supports fullscreen windows.
Screens typically map onto a physical display such as a
monitor, television or projector. Selecting a screen for a window
has no effect unless the window is made fullscreen, in which case
the window will fill only that particular virtual screen.
The `width` and `height` attributes of a screen give the current
resolution of the screen. The `x` and `y` attributes give the global
location of the top-left corner of the screen. This is useful for
determining if screens arranged above or next to one another.
You cannot always rely on the origin to give the placement of monitors.
For example, an X server with two displays without Xinerama enabled
will present two logically separate screens with no relation to each
other.
Use `Display.get_screens` or `Display.get_default_screen` to obtain an
instance of this class.
:Ivariables:
`x` : int
Left edge of the screen on the virtual desktop.
`y` : int
Top edge of the screen on the virtual desktop.
`width` : int
Width of the screen, in pixels.
`height` : int
Height of the screen, in pixels.
'''
def __init__(self, x, y, width, height):
self.x = x
self.y = y
self.width = width
self.height = height
def __repr__(self):
return '%s(x=%d, y=%d, width=%d, height=%d)' % \
(self.__class__.__name__, self.x, self.y, self.width, self.height)
def get_best_config(self, template=None):
'''Get the best available GL config.
Any required attributes can be specified in `template`. If
no configuration matches the template, `NoSuchConfigException` will
be raised.
:Parameters:
`template` : `pyglet.gl.Config`
A configuration with desired attributes filled in.
:rtype: `pyglet.gl.Config`
:return: A configuration supported by the platform that best
fulfils the needs described by the template.
'''
if template is None:
template = gl.Config()
configs = self.get_matching_configs(template)
if not configs:
raise NoSuchConfigException()
return configs[0]
def get_matching_configs(self, template):
'''Get a list of configs that match a specification.
Any attributes specified in `template` will have values equal
to or greater in each returned config. If no configs satisfy
the template, an empty list is returned.
:Parameters:
`template` : `pyglet.gl.Config`
A configuration with desired attributes filled in.
:rtype: list of `pyglet.gl.Config`
:return: A list of matching configs.
'''
raise NotImplementedError('abstract')
class MouseCursor(object):
'''An abstract mouse cursor.'''
#: Indicates if the cursor is drawn using OpenGL. This is True
#: for all mouse cursors except system cursors.
drawable = True
def draw(self, x, y):
'''Abstract render method.
The cursor should be drawn with the "hot" spot at the given
coordinates. The projection is set to the pyglet default (i.e.,
orthographic in window-space), however no other aspects of the
state can be assumed.
:Parameters:
`x` : int
X coordinate of the mouse pointer's hot spot.
`y` : int
Y coordinate of the mouse pointer's hot spot.
'''
raise NotImplementedError('abstract')
class DefaultMouseCursor(MouseCursor):
'''The default mouse cursor used by the operating system.'''
drawable = False
class ImageMouseCursor(MouseCursor):
'''A user-defined mouse cursor created from animage. import
Use this class to create your own mouse cursors and assign them
to windows. There are no constraints on the image size or format.
'''
drawable = True
def __init__(self, image, hot_x=0, hot_y=0):
'''Create a mouse cursor from animage. import
:Parameters:
`image` : `pyglet.image.AbstractImage`
Image to use for the mouse cursor. It must have a
valid ``texture`` attribute.
`hot_x` : int
X coordinate of the "hot" spot in the image relative to the
image's anchor.
`hot_y` : int
Y coordinate of the "hot" spot in the image, relative to the
image's anchor.
'''
self.texture = image.get_texture()
self.hot_x = hot_x
self.hot_y = hot_y
def draw(self, x, y):
gl.glPushAttrib(gl.GL_ENABLE_BIT | gl.GL_CURRENT_BIT)
gl.glColor4f(1, 1, 1, 1)
gl.glEnable(gl.GL_BLEND)
gl.glBlendFunc(gl.GL_SRC_ALPHA, gl.GL_ONE_MINUS_SRC_ALPHA)
self.texture.blit(x - self.hot_x, y - self.hot_y, 0)
gl.glPopAttrib()
def _PlatformEventHandler(data):
'''Decorator for platform event handlers.
Apply giving the platform-specific data needed by the window to associate
the method with an event. See platform-specific subclasses of this
decorator for examples.
The following attributes are set on the function, which is returned
otherwise unchanged:
_platform_event
True
_platform_event_data
List of data applied to the function (permitting multiple decorators
on the same method).
'''
def _event_wrapper(f):
f._platform_event = True
if not hasattr(f, '_platform_event_data'):
f._platform_event_data = []
f._platform_event_data.append(data)
return f
return _event_wrapper
class _WindowMetaclass(type):
'''Sets the _platform_event_names class variable on the window
subclass.
'''
def __init__(cls, name, bases, dict):
cls._platform_event_names = set()
for base in bases:
if hasattr(base, '_platform_event_names'):
cls._platform_event_names.update(base._platform_event_names)
for name, func in dict.items():
if hasattr(func, '_platform_event'):
cls._platform_event_names.add(name)
super(_WindowMetaclass, cls).__init__(name, bases, dict)
class BaseWindow(EventDispatcher):
'''Platform-independent application window.
A window is a "heavyweight" object occupying operating system resources.
The "client" or "content" area of a window is filled entirely with
an OpenGL viewport. Applications have no access to operating system
widgets or controls; all rendering must be done via OpenGL.
Windows may appear as floating regions or can be set to fill an entire
screen (fullscreen). When floating, windows may appear borderless or
decorated with a platform-specific frame (including, for example, the
title bar, minimize and close buttons, resize handles, and so on).
While it is possible to set the location of a window, it is recommended
that applications allow the platform to place it according to local
conventions. This will ensure it is not obscured by other windows,
and appears on an appropriate screen for the user.
To render into a window, you must first call `switch_to`, to make
it the current OpenGL context. If you use only one window in the
application, there is no need to do this.
:Ivariables:
`has_exit` : bool
True if the user has attempted to close the window.
:deprecated: Windows are closed immediately by the default
`on_close` handler when `pyglet.app.event_loop` is being
used.
'''
__metaclass__ = _WindowMetaclass
# Filled in by metaclass with the names of all methods on this (sub)class
# that are platform event handlers.
_platform_event_names = set()
#: The default window style.
WINDOW_STYLE_DEFAULT = None
#: The window style for pop-up dialogs.
WINDOW_STYLE_DIALOG = 'dialog'
#: The window style for tool windows.
WINDOW_STYLE_TOOL = 'tool'
#: A window style without any decoration.
WINDOW_STYLE_BORDERLESS = 'borderless'
#: The default mouse cursor.
CURSOR_DEFAULT = None
#: A crosshair mouse cursor.
CURSOR_CROSSHAIR = 'crosshair'
#: A pointing hand mouse cursor.
CURSOR_HAND = 'hand'
#: A "help" mouse cursor; typically a question mark and an arrow.
CURSOR_HELP = 'help'
#: A mouse cursor indicating that the selected operation is not permitted.
CURSOR_NO = 'no'
#: A mouse cursor indicating the element can be resized.
CURSOR_SIZE = 'size'
#: A mouse cursor indicating the element can be resized from the top
#: border.
CURSOR_SIZE_UP = 'size_up'
#: A mouse cursor indicating the element can be resized from the
#: upper-right corner.
CURSOR_SIZE_UP_RIGHT = 'size_up_right'
#: A mouse cursor indicating the element can be resized from the right
#: border.
CURSOR_SIZE_RIGHT = 'size_right'
#: A mouse cursor indicating the element can be resized from the lower-right
#: corner.
CURSOR_SIZE_DOWN_RIGHT = 'size_down_right'
#: A mouse cursor indicating the element can be resized from the bottom
#: border.
CURSOR_SIZE_DOWN = 'size_down'
#: A mouse cursor indicating the element can be resized from the lower-left
#: corner.
CURSOR_SIZE_DOWN_LEFT = 'size_down_left'
#: A mouse cursor indicating the element can be resized from the left
#: border.
CURSOR_SIZE_LEFT = 'size_left'
#: A mouse cursor indicating the element can be resized from the upper-left
#: corner.
CURSOR_SIZE_UP_LEFT = 'size_up_left'
#: A mouse cursor indicating the element can be resized vertically.
CURSOR_SIZE_UP_DOWN = 'size_up_down'
#: A mouse cursor indicating the element can be resized horizontally.
CURSOR_SIZE_LEFT_RIGHT = 'size_left_right'
#: A text input mouse cursor (I-beam).
CURSOR_TEXT = 'text'
#: A "wait" mouse cursor; typically an hourglass or watch.
CURSOR_WAIT = 'wait'
#: The "wait" mouse cursor combined with an arrow.
CURSOR_WAIT_ARROW = 'wait_arrow'
has_exit = False
#: Window display contents validity. The `pyglet.app` event loop
#: examines every window each iteration and only dispatches the `on_draw`
#: event to windows that have `invalid` set. By default, windows always
#: have `invalid` set to ``True``.
#:
#: You can prevent redundant redraws by setting this variable to ``False``
#: in the window's `on_draw` handler, and setting it to True again in
#: response to any events that actually do require a window contents
#: update.
#:
#: :type: bool
#: :since: pyglet 1.1
invalid = True
# Instance variables accessible only via properties
_width = None
_height = None
_caption = None
_resizable = False
_style = WINDOW_STYLE_DEFAULT
_fullscreen = False
_visible = False
_vsync = False
_screen = None
_config = None
_context = None
# Used to restore window size and position after fullscreen
_windowed_size = None
_windowed_location = None
# Subclasses should update these after relevant events
_mouse_cursor = DefaultMouseCursor()
_mouse_x = 0
_mouse_y = 0
_mouse_visible = True
_mouse_exclusive = False
_mouse_in_window = False
_event_queue = None
_enable_event_queue = True # overridden by EventLoop.
_allow_dispatch_event = False # controlled by dispatch_events stack frame
# Class attributes
_default_width = 640
_default_height = 480
def __init__(self,
width=None,
height=None,
caption=None,
resizable=False,
style=WINDOW_STYLE_DEFAULT,
fullscreen=False,
visible=True,
vsync=True,
display=None,
screen=None,
config=None,
context=None):
'''Create a window.
All parameters are optional, and reasonable defaults are assumed
where they are not specified.
The `display`, `screen`, `config` and `context` parameters form
a hierarchy of control: there is no need to specify more than
one of these. For example, if you specify `screen` the `display`
will be inferred, and a default `config` and `context` will be
created.
`config` is a special case; it can be a template created by the
user specifying the attributes desired, or it can be a complete
`config` as returned from Screen.get_matching_configssimilar. import
The context will be active as soon as the window is created, as if
`switch_to` was just called.
:Parameters:
`width` : int
Width of the window, in pixels. Not valid if `fullscreen`
is True. Defaults to 640.
`height` : int
Height of the window, in pixels. Not valid if `fullscreen`
is True. Defaults to 480.
`caption` : str or unicode
Initial caption (title) of the window. Defaults to
``sys.argv[0]``.
`resizable` : bool
If True, the window will be resizable. Defaults to False.
`style` : int
One of the ``WINDOW_STYLE_*`` constants specifying the
border style of the window.
`fullscreen` : bool
If True, the window will cover the entire screen rather
than floating. Defaults to False.
`visible` : bool
Determines if the window is visible immediately after
creation. Defaults to True. Set this to False if you
would like to change attributes of the window before
having it appear to the user.
`vsync` : bool
If True, buffer flips are synchronised to the primary screen's
vertical retrace, eliminating flicker.
`display` : `Display`
The display device to use. Useful only under X11.
`screen` : `Screen`
The screen to use, if in fullscreen.
`config` : `pyglet.gl.Config`
Either a template from whichtocreateacompleteconfig import
or a complete config.
`context` : `pyglet.gl.Context`
The context to attach to this window. The context must
not already be attached to another window.
'''
EventDispatcher.__init__(self)
self._event_queue = []
if not display:
display = get_platform().get_default_display()
if not screen:
screen = display.get_default_screen()
if not config:
for template_config in [
gl.Config(double_buffer=True, depth_size=24),
gl.Config(double_buffer=True, depth_size=16)]:
try:
config = screen.get_best_config(template_config)
break
except NoSuchConfigException:
pass
if not config:
raise NoSuchConfigException('No standard config is available.')
if not config.is_complete():
config = screen.get_best_config(config)
if not context:
context = config.create_context(gl.current_context)
# Set these in reverse order to above, to ensure we get user
# preference
self._context = context
self._config = self._context.config
self._screen = self._config.screen
self._display = self._screen.display
if fullscreen:
if width is not None or height is not None:
raise WindowException(
'Width and height cannot be specified with fullscreen.')
self._windowed_size = self._default_width, self._default_height
width = self._screen.width
height = self._screen.height
else:
if width is None:
width = self._default_width
if height is None:
height = self._default_height
self._width = width
self._height = height
self._resizable = resizable
self._fullscreen = fullscreen
self._style = style
if pyglet.options['vsync'] is not None:
self._vsync = pyglet.options['vsync']
else:
self._vsync = vsync
if caption is None:
caption = sys.argv[0]
self._caption = caption
from pyglet import app
app.windows.add(self)
self._create()
self.switch_to()
if visible:
self.set_visible(True)
self.activate()
def _create(self):
raise NotImplementedError('abstract')
def _recreate(self, changes):
'''Recreate the window with current attributes.
:Parameters:
`changes` : list of str
List of attribute names that were changed since the last
`_create` or `_recreate`. For example, ``['fullscreen']``
is given if the window is to be toggled to or from fullscreen. import
'''
raise NotImplementedError('abstract')
def flip(self):
'''Swap the OpenGL front and back buffers.
Call this method on a double-buffered window to update the
visible display with the back buffer. The contents of the back buffer
is undefined after this operation.
Windows are double-buffered by default. This method is called
automatically by `EventLoop` after the `on_draw` event.
'''
raise NotImplementedError('abstract')
def switch_to(self):
'''Make this window the current OpenGL rendering context.
Only one OpenGL context can be active at a time. This method sets
the current window's context to be current. You should use this
method in preference to `pyglet.gl.Context.set_current`, as it may
perform additional initialisation functions.
'''
raise NotImplementedError('abstract')
def set_fullscreen(self, fullscreen=True, screen=None):
'''Toggle to or from fullscreen. import
After toggling fullscreen, the GL context should have retained its
state and objects, however the buffers will need to be cleared and
redrawn.
:Parameters:
`fullscreen` : bool
True if the window should be made fullscreen, False if it
should be windowed.
`screen` : Screen
If not None and fullscreen is True, the window is moved to the
given screen. The screen must belong to the same display as
the window.
'''
if fullscreen == self._fullscreen and screen is None:
return
if not self._fullscreen:
# Save windowed size
self._windowed_size = self.get_size()
self._windowed_location = self.get_location()
if fullscreen and screen is not None:
assert screen.display is self.display
self._screen = screen
self._fullscreen = fullscreen
if self._fullscreen:
self._width = self.screen.width
self._height = self.screen.height
else:
self._width, self._height = self._windowed_size
self._recreate(['fullscreen'])
if not self._fullscreen and self._windowed_location:
# Restore windowed location -- no effect on OS X because of
# deferred recreate. Move into platform _create? XXX
self.set_location(*self._windowed_location)
def on_resize(self, width, height):
'''A default resize event handler.
This default handler updates the GL viewport to cover the entire
window and sets the ``GL_PROJECTION`` matrix to be orthagonal in
window space. The bottom-left corner is (0, 0) and the top-right
corner is the width and height of the window in pixels.
Override this event handler with your own to create another
projection, for example in perspective.
'''
gl.glViewport(0, 0, width, height)
gl.glMatrixMode(gl.GL_PROJECTION)
gl.glLoadIdentity()
gl.glOrtho(0, width, 0, height, -1, 1)
gl.glMatrixMode(gl.GL_MODELVIEW)
def on_close(self):
'''Default on_close handler.'''
self.has_exit = True
from pyglet import app
if app.event_loop is not None:
self.close()
def on_key_press(self, symbol, modifiers):
'''Default on_key_press handler.'''
if symbol == key.ESCAPE and not (modifiers & ~(key.MOD_NUMLOCK |
key.MOD_CAPSLOCK |
key.MOD_SCROLLLOCK)):
self.dispatch_event('on_close')
def close(self):
'''Close the window.
After closing the window, the GL context will be invalid. The
window instance cannot be reused once closed (see also `set_visible`).
The `pyglet.app.EventLoop.on_window_close` event is dispatched on
`pyglet.app.event_loop` when this method is called.
'''
from pyglet import app
if not self._context:
return
app.windows.remove(self)
self._context.destroy()
self._config = None
self._context = None
if app.event_loop:
app.event_loop.dispatch_event('on_window_close', self)
def draw_mouse_cursor(self):
'''Draw the custom mouse cursor.
If the current mouse cursor has ``drawable`` set, this method
is called before the buffers are flipped to render it.
This method always leaves the ``GL_MODELVIEW`` matrix as current,
regardless of what it was set to previously. No other GL state
is affected.
There is little need to override this method; instead, subclass
``MouseCursor`` and provide your own ``draw`` method.
'''
# Draw mouse cursor if set and visible.
# XXX leaves state in modelview regardless of starting state
if (self._mouse_cursor.drawable and
self._mouse_visible and
self._mouse_in_window):
gl.glMatrixMode(gl.GL_PROJECTION)
gl.glPushMatrix()
gl.glLoadIdentity()
gl.glOrtho(0, self.width, 0, self.height, -1, 1)
gl.glMatrixMode(gl.GL_MODELVIEW)
gl.glPushMatrix()
gl.glLoadIdentity()
self._mouse_cursor.draw(self._mouse_x, self._mouse_y)
gl.glMatrixMode(gl.GL_PROJECTION)
gl.glPopMatrix()
gl.glMatrixMode(gl.GL_MODELVIEW)
gl.glPopMatrix()
# Properties provide read-only access to instance variables. Use
# set_* methods to change them if applicable.
caption = property(lambda self: self._caption,
doc='''The window caption (title). Read-only.
:type: str
''')
resizable = property(lambda self: self._resizable,
doc='''True if the window is resizeable. Read-only.
:type: bool
''')
style = property(lambda self: self._style,
doc='''The window style; one of the ``WINDOW_STYLE_*`` constants.
Read-only.
:type: int
''')
fullscreen = property(lambda self: self._fullscreen,
doc='''True if the window is currently fullscreen. Read-only.
:type: bool
''')
visible = property(lambda self: self._visible,
doc='''True if the window is currently visible. Read-only.
:type: bool
''')
vsync = property(lambda self: self._vsync,
doc='''True if buffer flips are synchronised to the screen's vertical
retrace. Read-only.
:type: bool
''')
display = property(lambda self: self._display,
doc='''The display this window belongs to. Read-only.
:type: `Display`
''')
screen = property(lambda self: self._screen,
doc='''The screen this window is fullscreen in. Read-only.
:type: `Screen`
''')
config = property(lambda self: self._config,
doc='''A GL config describing the context of this window. Read-only.
:type: `pyglet.gl.Config`
''')
context = property(lambda self: self._context,
doc='''The OpenGL context attached to this window. Read-only.
:type: `pyglet.gl.Context`
''')
# These are the only properties that can be set
width = property(lambda self: self.get_size()[0],
lambda self, width: self.set_size(width, self.height),
doc='''The width of the window, in pixels. Read-write.
:type: int
''')
height = property(lambda self: self.get_size()[1],
lambda self, height: self.set_size(self.width, height),
doc='''The height of the window, in pixels. Read-write.
:type: int
''')
def set_caption(self, caption):
'''Set the window's caption.
The caption appears in the titlebar of the window, if it has one,
and in the taskbar on Windows and many X11 window managers.
:Parameters:
`caption` : str or unicode
The caption to set.
'''
raise NotImplementedError('abstract')
def set_minimum_size(self, width, height):
'''Set the minimum size of the window.
Once set, the user will not be able to resize the window smaller
than the given dimensions. There is no way to remove the
minimum size constraint on a window (but you could set it to 0,0).
The behaviour is undefined if the minimum size is set larger than
the current size of the window.
The window size does not include the border or title bar.
:Parameters:
`width` : int
Minimum width of the window, in pixels.
`height` : int
Minimum height of the window, in pixels.
'''
raise NotImplementedError('abstract')
def set_maximum_size(self, width, height):
'''Set the maximum size of the window.
Once set, the user will not be able to resize the window larger
than the given dimensions. There is no way to remove the
maximum size constraint on a window (but you could set it to a large
value).
The behaviour is undefined if the maximum size is set smaller than
the current size of the window.
The window size does not include the border or title bar.
:Parameters:
`width` : int
Maximum width of the window, in pixels.
`height` : int
Maximum height of the window, in pixels.
'''
raise NotImplementedError('abstract')
def set_size(self, width, height):
'''Resize the window.
The behaviour is undefined if the window is not resizable, or if
it is currently fullscreen.
The window size does not include the border or title bar.
:Parameters:
`width` : int
New width of the window, in pixels.
`height` : int
New height of the window, in pixels.
'''
raise NotImplementedError('abstract')
def get_size(self):
'''Return the current size of the window.
The window size does not include the border or title bar.
:rtype: (int, int)
:return: The width and height of the window, in pixels.
'''
raise NotImplementedError('abstract')
def set_location(self, x, y):
'''Set the position of the window.
:Parameters:
`x` : int
Distance of the left edge of the window from theleftedge import
of the virtual desktop, in pixels.
`y` : int
Distance of the top edge of the window from thetopedgeof import
the virtual desktop, in pixels.
'''
raise NotImplementedError('abstract')
def get_location(self):
'''Return the current position of the window.
:rtype: (int, int)
:return: The distances of the left and top edges from theirrespective import
edges on the virtual desktop, in pixels.
'''
raise NotImplementedError('abstract')
def activate(self):
'''Attempt to restore keyboard focus to the window.
Depending on the window manager or operating system, this may not
be successful. For example, on Windows XP an application is not
allowed to "steal" focus from anotherapplication.Insteadthe import
window's taskbar icon will flash, indicating it requires attention.
'''
raise NotImplementedError('abstract')
def set_visible(self, visible=True):
'''Show or hide the window.
:Parameters:
`visible` : bool
If True, the window will be shown; otherwise it will be
hidden.
'''
raise NotImplementedError('abstract')
def minimize(self):
'''Minimize the window.
'''
raise NotImplementedError('abstract')
def maximize(self):
'''Maximize the window.
The behaviour of this method is somewhat dependent on the user's
display setup. On a multi-monitor system, the window may maximize
to either a single screen or the entire virtual desktop.
'''
raise NotImplementedError('abstract')
def set_vsync(self, vsync):
'''Enable or disable vertical sync control.
When enabled, this option ensures flips from thebacktothefront import
buffer are performed only during the vertical retrace period of the
primary display. This can prevent "tearing" or flickering when
the buffer is updated in the middle of a video scan.
Note that LCD monitors have an analagous time in which they are not
reading from thevideobufferitdoescorrespondto import
a vertical retrace it has the same effect.
With multi-monitor systems the secondary monitor cannot be
synchronised to, so tearing and flicker cannot be avoided when the
window is positioned outside of the primary display. In this case
it may be advisable to forcibly reduce the framerate (for example,
using `pyglet.clock.set_fps_limit`).
:Parameters:
`vsync` : bool
If True, vsync is enabled, otherwise it is disabled.
'''
raise NotImplementedError('abstract')
def set_mouse_visible(self, visible=True):
'''Show or hide the mouse cursor.
The mouse cursor will only be hidden while it is positioned within
this window. Mouse events will still be processed as usual.
:Parameters:
`visible` : bool
If True, the mouse cursor will be visible, otherwise it
will be hidden.
'''
self._mouse_visible = visible
self.set_mouse_platform_visible()
def set_mouse_platform_visible(self, platform_visible=None):
'''Set the platform-drawn mouse cursor visibility. This is called
automatically after changing the mouse cursor or exclusive mode.
Applications should not normally need to call this method, see
`set_mouse_visible` instead.
:Parameters:
`platform_visible` : bool or None
If None, sets platform visibility to the required visibility
for the current exclusive mode and cursor type. Otherwise,
a bool value will override and force a visibility.
'''
raise NotImplementedError()
def set_mouse_cursor(self, cursor=None):
'''Change the appearance of the mouse cursor.
The appearance of the mouse cursor is only changed while it is
within this window.
:Parameters:
`cursor` : `MouseCursor`
The cursor to set, or None to restore the default cursor.
'''
if cursor is None:
cursor = DefaultMouseCursor()
self._mouse_cursor = cursor
self.set_mouse_platform_visible()
def set_exclusive_mouse(self, exclusive=True):
'''Hide the mouse cursor and direct all mouse events to this
window.
When enabled, this feature prevents the mouse leaving the window. It
is useful for certain styles of games that require complete control of
the mouse. The position of the mouse as reported in subsequent events
is meaningless when exclusive mouse is enabled; you should only use
the relative motion parameters ``dx`` and ``dy``.
:Parameters:
`exclusive` : bool
If True, exclusive mouse is enabled, otherwise it is disabled.
'''
raise NotImplementedError('abstract')
def set_exclusive_keyboard(self, exclusive=True):
'''Prevent the user from switchingawaythiswindowusing import
keyboard accelerators.
When enabled, this feature disables certain operating-system specific
key combinations such as Alt+Tab (Command+Tab on OS X). This can be
useful in certain kiosk applications, it should be avoided in general
applications or games.
:Parameters:
`exclusive` : bool
If True, exclusive keyboard is enabled, otherwise it is
disabled.
'''
raise NotImplementedError('abstract')
def get_system_mouse_cursor(self, name):
'''Obtain a system mouse cursor.
Use `set_mouse_cursor` to make the cursor returned by this method
active. The names accepted by this method are the ``CURSOR_*``
constants defined on this class.
:Parameters:
`name` : str
Name describing the mouse cursor to return. For example,
``CURSOR_WAIT``, ``CURSOR_HELP``, etc.
:rtype: `MouseCursor`
:return: A mouse cursor which can be used with `set_mouse_cursor`.
'''
raise NotImplementedError()
def set_icon(self, *images):
'''Set the window icon.
If multiple images are provided, one with an appropriate size
will be selected (if the correct size is not provided, the image
will be scaled).
Useful sizes to provide are 16x16, 32x32, 64x64 (Mac only) and
128x128 (Mac only).
:Parameters:
`images` : sequence of `pyglet.image.AbstractImage`
List of images to use for the window icon.
'''
pass
def clear(self):
'''Clear the window.
This is a convenience method for clearing the color and depth
buffer. The window must be the active context (see `switch_to`).
'''
gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT)
def dispatch_event(self, *args):
if not self._enable_event_queue or self._allow_dispatch_event:
EventDispatcher.dispatch_event(self, *args)
else:
self._event_queue.append(args)
def dispatch_events(self):
'''Poll the operating system event queue for new events and call
attached event handlers.
This method is provided for legacy applications targeting pyglet 1.0,
and advanced applications that must integrate their event loop
into another framework.
Typical applications should use `pyglet.app.run`.
'''
raise NotImplementedError('abstract')
# If documenting, show the event methods. Otherwise, leave them out
# as they are not really methods.
if hasattr(sys, 'is_epydoc') and sys.is_epydoc:
def on_key_press(symbol, modifiers):
'''A key on the keyboard was pressed (and held down).
In pyglet 1.0 the default handler sets `has_exit` to ``True`` if
the ``ESC`` key is pressed.
In pyglet 1.1 the default handler dispatches the `on_close`
event if the ``ESC`` key is pressed.
:Parameters:
`symbol` : int
The key symbol pressed.
`modifiers` : int
Bitwise combination of the key modifiers active.
:event:
'''
def on_key_release(symbol, modifiers):
'''A key on the keyboard was released.
:Parameters:
`symbol` : int
The key symbol pressed.
`modifiers` : int
Bitwise combination of the key modifiers active.
:event:
'''
def on_text(text):
'''The user input some text.
Typically this is called after `on_key_press` and before
`on_key_release`, but may also be called multiple times if the key
is held down (key repeating); or called without key presses if
another input method was used (e.g., a pen input).
You should always use this method for interpreting text, as the
key symbols often have complex mappings to their unicode
representation which this event takes care of.
:Parameters:
`text` : unicode
The text entered by the user.
:event:
'''
def on_text_motion(motion):
'''The user moved the text input cursor.
Typically this is called after `on_key_press` and before
`on_key_release`, but may also be called multiple times if the key
is help down (key repeating).
You should always use this method for moving the text input cursor
(caret), as different platforms have different default keyboard
mappings, and key repeats are handled correctly.
The values that `motion` can take are defined in
`pyglet.window.key`:
* MOTION_UP
* MOTION_RIGHT
* MOTION_DOWN
* MOTION_LEFT
* MOTION_NEXT_WORD
* MOTION_PREVIOUS_WORD
* MOTION_BEGINNING_OF_LINE
* MOTION_END_OF_LINE
* MOTION_NEXT_PAGE
* MOTION_PREVIOUS_PAGE
* MOTION_BEGINNING_OF_FILE
* MOTION_END_OF_FILE
* MOTION_BACKSPACE
* MOTION_DELETE
:Parameters:
`motion` : int
The direction of motion; see remarks.
:event:
'''
def on_text_motion_select(motion):
'''The user moved the text input cursor while extending the
selection.
Typically this is called after `on_key_press` and before
`on_key_release`, but may also be called multiple times if the key
is help down (key repeating).
You should always use this method for responding to text selection
events rather than the raw `on_key_press`, as different platforms
have different default keyboard mappings, and key repeats are
handled correctly.
The values that `motion` can take are defined in `pyglet.window.key`:
* MOTION_UP
* MOTION_RIGHT
* MOTION_DOWN
* MOTION_LEFT
* MOTION_NEXT_WORD
* MOTION_PREVIOUS_WORD
* MOTION_BEGINNING_OF_LINE
* MOTION_END_OF_LINE
* MOTION_NEXT_PAGE
* MOTION_PREVIOUS_PAGE
* MOTION_BEGINNING_OF_FILE
* MOTION_END_OF_FILE
:Parameters:
`motion` : int
The direction of selection motion; see remarks.
:event:
'''
def on_mouse_motion(x, y, dx, dy):
'''The mouse was moved with no buttons held down.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
`dx` : int
Relative X position from thepreviousmouseposition. import
`dy` : int
Relative Y position from thepreviousmouseposition. import
:event:
'''
def on_mouse_drag(x, y, dx, dy, buttons, modifiers):
'''The mouse was moved with one or more mouse buttons pressed.
This event will continue to be fired even if the mouse leaves
the window, so long as the drag buttons are continuously held down.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
`dx` : int
Relative X position from thepreviousmouseposition. import
`dy` : int
Relative Y position from thepreviousmouseposition. import
`buttons` : int
Bitwise combination of the mouse buttons currently pressed.
`modifiers` : int
Bitwise combination of any keyboard modifiers currently
active.
:event:
'''
def on_mouse_press(x, y, button, modifiers):
'''A mouse button was pressed (and held down).
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
`button` : int
The mouse button that was pressed.
`modifiers` : int
Bitwise combination of any keyboard modifiers currently
active.
:event:
'''
def on_mouse_release(x, y, button, modifiers):
'''A mouse button was released.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
`button` : int
The mouse button that was released.
`modifiers` : int
Bitwise combination of any keyboard modifiers currently
active.
:event:
'''
def on_mouse_scroll(x, y, scroll_x, scroll_y):
'''The mouse wheel was scrolled.
Note that most mice have only a vertical scroll wheel, so
`scroll_x` is usually 0. An exception to this is the Apple Mighty
Mouse, which has a mouse ball in place of the wheel which allows
both `scroll_x` and `scroll_y` movement.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
`scroll_x` : int
Number of "clicks" towards the right (left if negative).
`scroll_y` : int
Number of "clicks" upwards (downwards if negative).
:event:
'''
def on_close():
'''The user attempted to close the window.
This event can be triggered by clicking on the "X" control box in
the window title bar, or by some other platform-dependent manner.
The default handler sets `has_exit` to ``True``. In pyglet 1.1, if
`pyglet.app.event_loop` is being used, `close` is also called,
closing the window immediately.
:event:
'''
def on_mouse_enter(x, y):
'''The mouse was moved into the window.
This event will not be trigged if the mouse is currently being
dragged.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
:event:
'''
def on_mouse_leave(x, y):
'''The mouse was moved outside of the window.
This event will not be trigged if the mouse is currently being
dragged. Note that the coordinates of the mouse pointer will be
outside of the window rectangle.
:Parameters:
`x` : int
Distance in pixels from theleftedgeofthewindow. import
`y` : int
Distance in pixels from thebottomedgeofthewindow. import
:event:
'''
def on_expose():
'''A portion of the window needs to be redrawn.
This event is triggered when the window first appears, and any time
the contents of the window is invalidated due to another window
obscuring it.
There is no way to determine which portion of the window needs
redrawing. Note that the use of this method is becoming
increasingly uncommon, as newer window managers composite windows
automatically and keep a backing store of the window contents.
:event:
'''
def on_resize(width, height):
'''The window was resized.
The window will have the GL context when this event is dispatched;
there is no need to call `switch_to` in this handler.
:Parameters:
`width` : int
The new width of the window, in pixels.
`height` : int
The new height of the window, in pixels.
:event:
'''
def on_move(x, y):
'''The window was moved.
:Parameters:
`x` : int
Distance from theleftedgeofthescreentotheleftedge import
of the window.
`y` : int
Distance from thetopedgeofthescreentothetopedgeof import
the window. Note that this is one of few methods in pyglet
which use a Y-down coordinate system.
:event:
'''
def on_activate():
'''The window was activated.
This event can be triggered by clicking on the title bar, bringing
it to the foreground; or by some platform-specific method.
When a window is "active" it has the keyboard focus.
:event:
'''
def on_deactivate():
'''The window was deactivated.
This event can be triggered by clicking on another application
window. When a window is deactivated it no longer has the
keyboard focus.
:event:
'''
def on_show():
'''The window was shown.
This event is triggered when a window is restored after being
minimised, or after being displayed for the first time.
:event:
'''
def on_hide():
'''The window was hidden.
This event is triggered when a window is minimised or (on Mac OS X)
hidden by the user.
:event:
'''
def on_context_lost():
'''The window's GL context was lost.
When the context is lost no more GL methods can be called until it
is recreated. This is a rare event, triggered perhaps by the user
switching to an incompatible video mode. When it occurs, an
application will need to reload all objects (display lists, texture
objects, shaders) as well as restore the GL state.
:event:
'''
def on_context_state_lost():
'''The state of the window's GL context was lost.
pyglet may sometimes need to recreate the window's GL context if
the window is moved to another video device, or between fullscreen
or windowed mode. In this case it will try to share the objects
(display lists, texture objects, shaders) between the old and new
contexts. If this is possible, only the current state of the GL
context is lost, and the application should simply restore state.
:event:
'''
def on_draw():
'''The window contents must be redrawn.
The `EventLoop` will dispatch this event when the window
should be redrawn. This will happen during idle time after
any window events and after any scheduled functions were called.
The window will already have the GL context, so there is no
need to call `switch_to`. The window's `flip` method will
be called after this event, so your event handler should not.
You should make no assumptions about the window contents when
this event is triggered; a resize or expose event may have
invalidated the framebuffer since the last time it was drawn.
:since: pyglet 1.1
:event:
'''
BaseWindow.register_event_type('on_key_press')
BaseWindow.register_event_type('on_key_release')
BaseWindow.register_event_type('on_text')
BaseWindow.register_event_type('on_text_motion')
BaseWindow.register_event_type('on_text_motion_select')
BaseWindow.register_event_type('on_mouse_motion')
BaseWindow.register_event_type('on_mouse_drag')
BaseWindow.register_event_type('on_mouse_press')
BaseWindow.register_event_type('on_mouse_release')
BaseWindow.register_event_type('on_mouse_scroll')
BaseWindow.register_event_type('on_mouse_enter')
BaseWindow.register_event_type('on_mouse_leave')
BaseWindow.register_event_type('on_close')
BaseWindow.register_event_type('on_expose')
BaseWindow.register_event_type('on_resize')
BaseWindow.register_event_type('on_move')
BaseWindow.register_event_type('on_activate')
BaseWindow.register_event_type('on_deactivate')
BaseWindow.register_event_type('on_show')
BaseWindow.register_event_type('on_hide')
BaseWindow.register_event_type('on_context_lost')
BaseWindow.register_event_type('on_context_state_lost')
BaseWindow.register_event_type('on_draw')
def get_platform():
'''Get an instance of the Platform most appropriate for this
system.
:rtype: `Platform`
:return: The platform instance.
'''
return _platform
_is_epydoc = hasattr(sys, 'is_epydoc') and sys.is_epydoc
if _is_epydoc:
# We are building documentation
Window = BaseWindow
Window.__name__ = 'Window'
del BaseWindow
else:
# Try to determine which platform to use.
if sys.platform == 'darwin':
from pyglet.window.carbon import CarbonPlatform,CarbonWindow
_platform = CarbonPlatform()
Window = CarbonWindow
elif sys.platform in ('win32', 'cygwin'):
from pyglet.window.win32 import Win32Platform,Win32Window
_platform = Win32Platform()
Window = Win32Window
else:
from pyglet.window.xlib import XlibPlatform,XlibWindow
_platform = XlibPlatform()
Window = XlibWindow
# Create shadow window. (trickery is for circular import)
if not _is_epydoc:
pyglet.window = sys.modules[__name__]
gl._create_shadow_window()
|