bpnn.py :  » Development » Psyco » psyco-dist » test » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » Psyco 
Psyco » psyco dist » test » bpnn.py
#!/usr/bin/python
# Back-Propagation Neural Networks
# 
# Written in Python.  See http://www.python.org/
#
# Neil Schemenauer <nascheme@enme.ucalgary.ca>

import math
import random
import operator
import string
import psyco
#psyco.full()
from psyco.classes import *
#psyco.log()
#psyco.profile()
#__metaclass__ = type


random.seed(0)

def time(fn, *args):
  import time, traceback
  begin = time.clock()
  try:
    result = fn(*args)
  except:
    end = time.clock()
    traceback.print_exc()
    result = '<exception>'
  else:
    end = time.clock()
  return result, end-begin

# calculate a random number where:  a <= rand < b
def rand(a, b):
    return (b-a)*random.random() + a

# Make a matrix (we could use NumPy to speed this up)
def makeMatrix(I, J, fill=0.0):
    m = []
    for i in range(I):
        m.append([fill]*J)
    return m

class NN:
    
    def __init__(self, ni, nh, no):
        # number of input, hidden, and output nodes
        self.ni = ni + 1 # +1 for bias node
        self.nh = nh
        self.no = no

        # activations for nodes
        self.ai = [1.0]*self.ni
        self.ah = [1.0]*self.nh
        self.ao = [1.0]*self.no
        
        # create weights
        self.wi = makeMatrix(self.ni, self.nh)
        self.wo = makeMatrix(self.nh, self.no)
        # set them to random vaules
        for i in range(self.ni):
            for j in range(self.nh):
                self.wi[i][j] = rand(-2.0, 2.0)
        for j in range(self.nh):
            for k in range(self.no):
                self.wo[j][k] = rand(-2.0, 2.0)

        # last change in weights for momentum   
        self.ci = makeMatrix(self.ni, self.nh)
        self.co = makeMatrix(self.nh, self.no)

    def update(self, inputs):
        if len(inputs) != self.ni-1:
            raise ValueError, 'wrong number of inputs'

        # input activations
        for i in range(self.ni-1):
            #self.ai[i] = 1.0/(1.0+math.exp(-inputs[i]))
            self.ai[i] = inputs[i]

        # hidden activations
        for j in range(self.nh):
            sum = 0.0
            for i in range(self.ni):
                sum = sum + self.ai[i] * self.wi[i][j]
            self.ah[j] = 1.0/(1.0+math.exp(-sum))

        # output activations
        for k in range(self.no):
            sum = 0.0
            for j in range(self.nh):
                sum = sum + self.ah[j] * self.wo[j][k]
            self.ao[k] = 1.0/(1.0+math.exp(-sum))

        return self.ao[:]


    def backPropagate(self, targets, N, M):
        if len(targets) != self.no:
            raise ValueError, 'wrong number of target values'

        # calculate error terms for output
        output_deltas = [0.0] * self.no
        for k in range(self.no):
            ao = self.ao[k]
            output_deltas[k] = ao*(1-ao)*(targets[k]-ao)

        # calculate error terms for hidden
        hidden_deltas = [0.0] * self.nh
        for j in range(self.nh):
            sum = 0.0
            for k in range(self.no):
                sum = sum + output_deltas[k]*self.wo[j][k]
            hidden_deltas[j] = self.ah[j]*(1-self.ah[j])*sum

        # update output weights
        for j in range(self.nh):
            for k in range(self.no):
                change = output_deltas[k]*self.ah[j]
                self.wo[j][k] = self.wo[j][k] + N*change + M*self.co[j][k]
                self.co[j][k] = change
                #print N*change, M*self.co[j][k]

        # update input weights
        for i in range(self.ni):
            for j in range(self.nh):
                change = hidden_deltas[j]*self.ai[i]
                self.wi[i][j] = self.wi[i][j] + N*change + M*self.ci[i][j]
                self.ci[i][j] = change

        # calculate error
        error = 0.0
        for k in range(len(targets)):
            error = error + 0.5*(targets[k]-self.ao[k])**2
        return error


    def test(self, patterns):
        for p in patterns:
            print p[0], '->', self.update(p[0])

    def weights(self):
        print 'Input weights:'
        for i in range(self.ni):
            print self.wi[i]
        print
        print 'Output weights:'
        for j in range(self.nh):
            print self.wo[j]

    def train(self, patterns, iterations=2000, N=0.5, M=0.1):
        # N: learning rate
        # M: momentum factor
        for i in xrange(iterations):
            error = 0.0
            for p in patterns:
                inputs = p[0]
                targets = p[1]
                self.update(inputs)
                error = error + self.backPropagate(targets, N, M)
            if i % 100 == 0:
                print 'error %-14f' % error


def demo():
    # Teach network XOR function
    pat = [
        [[0,0], [0]],
        [[0,1], [1]],
        [[1,0], [1]],
        [[1,1], [0]]
    ]

    # create a network with two input, two hidden, and two output nodes
    n = NN(2, 3, 1)
    # train it with some patterns
    n.train(pat, 2000)
    # test it
    n.test(pat)



if __name__ == '__main__':
    v, t1 = time(demo)
    v, t2 = time(demo)
    v, t3 = time(demo)
    v, t4 = time(demo)
    v, t5 = time(demo)
    print t1, t2, t3, t4, t5
    psyco.dumpcodebuf()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.