ArcBall.py :  » Development » PyObjC » trunk » pyobjc » PyOpenGL-2.0.2.01 » OpenGL » Demo » NeHe » lesson48 » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » PyObjC 
PyObjC » trunk » pyobjc » PyOpenGL 2.0.2.01 » OpenGL » Demo » NeHe » lesson48 » ArcBall.py
"""
ArcBall.py -- Math utilities, vector, matrix types and ArcBall quaternion rotation class

>>> unit_test_ArcBall_module ()
unit testing ArcBall
Quat for first drag
[ 0.08438914 -0.08534209 -0.06240178  0.99080837]
First transform
[[ 0.97764552 -0.1380603   0.15858325  0.        ]
 [ 0.10925253  0.97796899  0.17787792  0.        ]
 [-0.17964739 -0.15657592  0.97119039  0.        ]
 [ 0.          0.          0.          1.        ]]
LastRot at end of first drag
[[ 0.97764552 -0.1380603   0.15858325]
 [ 0.10925253  0.97796899  0.17787792]
 [-0.17964739 -0.15657592  0.97119039]]
Quat for second drag
[ 0.00710336  0.31832787  0.02679029  0.94757545]
Second transform
[[ 0.88022292 -0.08322023 -0.46720669  0.        ]
 [ 0.14910145  0.98314685  0.10578787  0.        ]
 [ 0.45052907 -0.16277808  0.8777966   0.        ]
 [ 0.          0.          0.          1.00000001]]
"""

import Numeric
import copy
from math import sqrt

# //assuming IEEE-754(GLfloat), which i believe has max precision of 7 bits
Epsilon = 1.0e-5


class ArcBallT:
  def __init__ (self, NewWidth, NewHeight):
    self.m_StVec = Vector3fT ()
    self.m_EnVec = Vector3fT ()
    self.m_AdjustWidth = 1.0
    self.m_AdjustHeight = 1.0
    self.setBounds (NewWidth, NewHeight)

  def __str__ (self):
    str_rep = ""
    str_rep += "StVec = " + str (self.m_StVec)
    str_rep += "\nEnVec = " + str (self.m_EnVec)
    str_rep += "\n scale coords %f %f" % (self.m_AdjustWidth, self.m_AdjustHeight)
    return str_rep

  def setBounds (self, NewWidth, NewHeight):
    # //Set new bounds
    assert (NewWidth > 1.0 and NewHeight > 1.0), "Invalid width or height for bounds."
    # //Set adjustment factor for width/height
    self.m_AdjustWidth = 1.0 / ((NewWidth - 1.0) * 0.5)
    self.m_AdjustHeight = 1.0 / ((NewHeight - 1.0) * 0.5)

  def _mapToSphere (self, NewPt):
    # Given a new window coordinate, will modify NewVec in place
    X = 0
    Y = 1
    Z = 2

    NewVec = Vector3fT ()
    # //Copy paramter into temp point
    TempPt = copy.copy (NewPt)
    # //Adjust point coords and scale down to range of [-1 ... 1]
    TempPt [X] = (NewPt [X] * self.m_AdjustWidth) - 1.0
    TempPt [Y] = 1.0 - (NewPt [Y] * self.m_AdjustHeight)
    # //Compute the square of the length of the vector to the point from the center
    length = sum (Numeric.dot (TempPt, TempPt))
    # //If the point is mapped outside of the sphere... (length > radius squared)
    if (length > 1.0):
      # //Compute a normalizing factor (radius / sqrt(length))
      norm    = 1.0 / sqrt (length);

      # //Return the "normalized" vector, a point on the sphere
      NewVec [X] = TempPt [X] * norm;
      NewVec [Y] = TempPt [Y] * norm;
      NewVec [Z] = 0.0;
    else:      # //Else it's on the inside
      # //Return a vector to a point mapped inside the sphere sqrt(radius squared - length)
      NewVec [X] = TempPt [X]
      NewVec [Y] = TempPt [Y]
      NewVec [Z] = sqrt (1.0 - length)

    return NewVec

  def click (self, NewPt):
    # //Mouse down (Point2fT
    self.m_StVec = self._mapToSphere (NewPt)
    return

  def drag (self, NewPt):
    # //Mouse drag, calculate rotation (Point2fT Quat4fT)
    """ drag (Point2fT mouse_coord) -> new_quaternion_rotation_vec
    """
    X = 0
    Y = 1
    Z = 2
    W = 3

    self.m_EnVec = self._mapToSphere (NewPt)

    # //Compute the vector perpendicular to the begin and end vectors
    # Perp = Vector3fT ()
    Perp = Vector3fCross(self.m_StVec, self.m_EnVec);

    NewRot = Quat4fT ()
    # //Compute the length of the perpendicular vector
    if (Vector3fLength(Perp) > Epsilon):    #    //if its non-zero
      # //We're ok, so return the perpendicular vector as the transform after all
      NewRot[X] = Perp[X];
      NewRot[Y] = Perp[Y];
      NewRot[Z] = Perp[Z];
      # //In the quaternion values, w is cosine (theta / 2), where theta is rotation angle
      NewRot[W] = Vector3fDot(self.m_StVec, self.m_EnVec);
    else:    #                            //if its zero
      # //The begin and end vectors coincide, so return a quaternion of zero matrix (no rotation)
      NewRot.X = NewRot.Y = NewRot.Z = NewRot.W = 0.0;
      
    return NewRot


# ##################### Math utility ##########################################


def Matrix4fT ():
  return Numeric.identity (4, 'f')

def Matrix3fT ():
  return Numeric.identity (3, 'f')

def Quat4fT ():
  return Numeric.zeros (4, 'f')

def Vector3fT ():
  return Numeric.zeros (3, 'f')

def Point2fT (x = 0.0, y = 0.0):
  pt = Numeric.zeros (2, 'f')
  pt [0] = x
  pt [1] = y
  return pt

def Vector3fDot(u, v):
  # Dot product of two 3f vectors
  dotprod = Numeric.dot (u,v)
  return dotprod

def Vector3fCross(u, v):
  # Cross product of two 3f vectors
  X = 0
  Y = 1
  Z = 2
  cross = Numeric.zeros (3, 'f')
  cross [X] = (u[Y] * v[Z]) - (u[Z] * v[Y])
  cross [Y] = (u[Z] * v[X]) - (u[X] * v[Z])
  cross [Z] = (u[X] * v[Y]) - (u[Y] * v[X])
  return cross

def Vector3fLength (u):
  mag_squared = sum(Numeric.dot (u,u))
  mag = sqrt (mag_squared)
  return mag
  
def Matrix3fSetIdentity ():
  return Numeric.identity (3, 'f')

def Matrix3fMulMatrix3f (matrix_a, matrix_b):
  return Numeric.matrixmultiply (matrix_a, matrix_b)




def Matrix4fSVD (NewObj):
  X = 0
  Y = 1
  Z = 2
  s = sqrt ( 
    ( (NewObj [X][X] * NewObj [X][X]) + (NewObj [X][Y] * NewObj [X][Y]) + (NewObj [X][Z] * NewObj [X][Z]) +
    (NewObj [Y][X] * NewObj [Y][X]) + (NewObj [Y][Y] * NewObj [Y][Y]) + (NewObj [Y][Z] * NewObj [Y][Z]) +
    (NewObj [Z][X] * NewObj [Z][X]) + (NewObj [Z][Y] * NewObj [Z][Y]) + (NewObj [Z][Z] * NewObj [Z][Z]) ) / 3.0 )
  return s

def Matrix4fSetRotationScaleFromMatrix3f(NewObj, three_by_three_matrix):
  # Modifies NewObj in-place by replacing its upper 3x3 portion from the 
  # passed in 3x3 matrix.
  # NewObj = Matrix4fT ()
  NewObj [0:3,0:3] = three_by_three_matrix
  return NewObj

# /**
# * Sets the rotational component (upper 3x3) of this matrix to the matrix
# * values in the T precision Matrix3d argument; the other elements of
# * this matrix are unchanged; a singular value decomposition is performed
# * on this object's upper 3x3 matrix to factor out the scale, then this
# * object's upper 3x3 matrix components are replaced by the passed rotation
# * components, and then the scale is reapplied to the rotational
# * components.
# * @param three_by_three_matrix T precision 3x3 matrix
# */
def Matrix4fSetRotationFromMatrix3f (NewObj, three_by_three_matrix):
  scale = Matrix4fSVD (NewObj)

  NewObj = Matrix4fSetRotationScaleFromMatrix3f(NewObj, three_by_three_matrix);
  scaled_NewObj = NewObj * scale       # Matrix4fMulRotationScale(NewObj, scale);
  return scaled_NewObj

def Matrix3fSetRotationFromQuat4f (q1):
  # Converts the H quaternion q1 into a new equivalent 3x3 rotation matrix. 
  X = 0
  Y = 1
  Z = 2
  W = 3

  NewObj = Matrix3fT ()
  n = sum (Numeric.dot (q1, q1))
  s = 0.0
  if (n > 0.0):
    s = 2.0 / n
  xs = q1 [X] * s;  ys = q1 [Y] * s;  zs = q1 [Z] * s
  wx = q1 [W] * xs; wy = q1 [W] * ys; wz = q1 [W] * zs
  xx = q1 [X] * xs; xy = q1 [X] * ys; xz = q1 [X] * zs
  yy = q1 [Y] * ys; yz = q1 [Y] * zs; zz = q1 [Z] * zs
  # This math all comes about by way of algebra, complex math, and trig identities.
  # See Lengyel pages 88-92
  NewObj [X][X] = 1.0 - (yy + zz);  NewObj [Y][X] = xy - wz;       NewObj [Z][X] = xz + wy;
  NewObj [X][Y] =       xy + wz;     NewObj [Y][Y] = 1.0 - (xx + zz);  NewObj [Z][Y] = yz - wx;
  NewObj [X][Z] =       xz - wy;     NewObj [Y][Z] = yz + wx;            NewObj [Z][Z] = 1.0 - (xx + yy)

  return NewObj






def unit_test_ArcBall_module ():
  # Unit testing of the ArcBall calss and the real math behind it.
  # Simulates a click and drag followed by another click and drag.
  print "unit testing ArcBall"
  Transform = Matrix4fT ()
  LastRot = Matrix3fT ()
  ThisRot = Matrix3fT ()

  ArcBall = ArcBallT (640, 480)
  # print "The ArcBall with NO click"
  # print ArcBall
  # First click
  LastRot = copy.copy (ThisRot)
  mouse_pt = Point2fT (500,250)
  ArcBall.click (mouse_pt)
  # print "The ArcBall with first click"
  # print ArcBall
  # First drag
  mouse_pt = Point2fT (475, 275)
  ThisQuat = ArcBall.drag (mouse_pt)
  # print "The ArcBall after first drag"
  # print ArcBall
  # print
  # print
  print "Quat for first drag"
  print ThisQuat
  ThisRot = Matrix3fSetRotationFromQuat4f (ThisQuat)
  # Linear Algebra matrix multiplication A = old, B = New : C = A * B
  ThisRot = Matrix3fMulMatrix3f (LastRot, ThisRot)
  Transform = Matrix4fSetRotationFromMatrix3f (Transform, ThisRot)
  print "First transform"
  print Transform
  # Done with first drag


  # second click
  LastRot = copy.copy (ThisRot)
  print "LastRot at end of first drag"
  print LastRot
  mouse_pt = Point2fT (350,260)
  ArcBall.click (mouse_pt)
  # second drag
  mouse_pt = Point2fT (450, 260)
  ThisQuat = ArcBall.drag (mouse_pt)
  # print "The ArcBall"
  # print ArcBall
  print "Quat for second drag"
  print ThisQuat
  ThisRot = Matrix3fSetRotationFromQuat4f (ThisQuat)
  ThisRot = Matrix3fMulMatrix3f (LastRot, ThisRot)
  # print ThisRot
  Transform = Matrix4fSetRotationFromMatrix3f (Transform, ThisRot)
  print "Second transform"
  print Transform
  # Done with second drag
  LastRot = copy.copy (ThisRot)

def _test ():
  # This will run doctest's unit testing capability.
  # see http://www.python.org/doc/current/lib/module-doctest.html
  #
  # doctest introspects the ArcBall module for all docstrings
  # that look like interactive python sessions and invokes
  # the same commands then and there as unit tests to compare
  # the output generated. Very nice for unit testing and
  # documentation.
  import doctest, ArcBall
  return doctest.testmod (ArcBall)

if __name__ == "__main__":
  # Invoke our function that runs python's doctest unit testing tool.
  _test ()

# unit_test ()
w___w_w.__j__a__v__a__2__s__._co___m | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.