poisson_test.py :  » Development » PySparse » pysparse-1.1 » Examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » PySparse 
PySparse » pysparse 1.1 » Examples » poisson_test.py
import numpy
import math
from pysparse import spmatrix
from pysparse import itsolvers
from pysparse import precon
import time

def poisson2d(n):
    L = spmatrix.ll_mat(n*n, n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if i < n-1:
                L[k,k+1] = -1
            if j > 0:
                L[k,k-n] = -1
            if j < n-1:
                L[k,k+n] = -1
    return L

def poisson2d_sym(n):
    L = spmatrix.ll_mat_sym(n*n)
    for i in range(n):
        for j in range(n):
            k = i + n*j
            L[k,k] = 4
            if i > 0:
                L[k,k-1] = -1
            if j > 0:
                L[k,k-n] = -1
    return L

def poisson2d_sym_blk(n):
    L = spmatrix.ll_mat_sym(n*n)
    I = spmatrix.ll_mat_sym(n)
    P = spmatrix.ll_mat_sym(n)
    for i in range(n):
        I[i,i] = -1
    for i in range(n):
        P[i,i] = 4
        if i > 0: P[i,i-1] = -1
    for i in range(0, n*n, n):
        L[i:i+n,i:i+n] = P
        if i > 0: L[i:i+n,i-n:i] = I
    return L

tol = 1e-8
n = 100

t1 = time.clock()
L = poisson2d_sym_blk(n)
print 'Time for constructing the matrix using poisson2d_sym_blk: %8.2f sec' % (time.clock() - t1, )

t1 = time.clock()
L = poisson2d_sym(n)
print 'Time for constructing the matrix using poisson2d_sym    : %8.2f sec' % (time.clock() - t1, )

t1 = time.clock()
L = poisson2d(n)
print 'Time for constructing the matrix using poisson2d        : %8.2f sec' % (time.clock() - t1, )


A = L.to_csr()
S = L.to_sss()
print L.nnz
print S.nnz
print A.nnz
b = numpy.ones(n*n, 'd')

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(S, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using SSS matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
S.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

print x[0:10]

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using CSR matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
A.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(L, b, x, tol, 2000)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using LL matrix: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
A.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

K_ssor = precon.ssor(S, 1.9)
t1 = time.clock()

x = numpy.zeros(n*n, 'd')
info, iter, relres = itsolvers.pcg(S, b, x, tol, 2000, K_ssor)
print 'info=%d, iter=%d, relres=%e' % (info, iter, relres)

print 'Time for solving the system using SSS matrix and SSOR preconditioner: %8.2f sec' % (time.clock() - t1, )

print 'norm(x) = %g' % math.sqrt(numpy.dot(x, x))

r = numpy.zeros(n*n, 'd')
S.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(numpy.dot(r, r))

# ---------------------------------------------------------------------------------------

from pysparse import jdsym
jdsym.jdsym(S, None, None, 5, 0.0, 1e-8, 100, itsolvers.qmrs, clvl=1)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.