pysparse_test.py :  » Development » PySparse » pysparse-1.1 » Examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » PySparse 
PySparse » pysparse 1.1 » Examples » pysparse_test.py
import math, os, sys, time
import numpy as Numeric
from pysparse import spmatrix
from pysparse import itsolvers
from pysparse import precon

ll = spmatrix.ll_mat(5,5)
print ll
print ll[1,1]
print ll

ll[2,1] = 1.0
ll[1,3] = 2.0
print ll
print ll.to_csr()

print ll[1,3]
print ll[1,-1]
print ll.nnz

ll.export_mtx('test.mtx')

L = spmatrix.ll_mat(10, 10)
for i in range(0, 10):
    L[i,i] = float(i+1)

A = L.to_csr()
x = Numeric.ones([10], 'd')
y = Numeric.zeros([10], 'd')
print A, x, y
A.matvec(x, y)
print y

ll = spmatrix.ll_mat(100, 100)
for i in range(0, 100, 5):
    for j in range(0, 100, 4):
        ll[i,j] = 1.0/float(i+j+1)
A = ll.to_csr()

x = Numeric.arange(100).astype(Numeric.float)
y = Numeric.zeros(100, 'd')
z = Numeric.zeros(100, 'd')

A.matvec(x, y)
print y
print 'norm(y) = ', math.sqrt(Numeric.add.reduce(y))

##A.matvec_transp(x, z)
##print z
##print 'norm(z) = ', math.sqrt(Numeric.add.reduce(z))

L = spmatrix.ll_mat(10,10)
for i in range(10):
    L[i,i] = float(i+1)
A = L.to_csr()
print A
x = Numeric.zeros(10, 'd')
b = Numeric.ones(10, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-8, 100)
print info, iter, relres
print x
if (info != 0):
    print >> sys.stderr, 'cg not converged'

L2 = L.copy()
x = Numeric.zeros(10, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-8, 100)
print info, iter, relres

# -----------------------------------------------------------
print 'remove test'
n = 100
L = spmatrix.ll_mat(n, n)

for run in range(5):

    print 'adding elements...'
    for i in range(0,n,2):
        for j in range (n):
            L[i,j] = i+j+1
            # print L

    print L.nnz

    print 'removing elements...'
    for j in range(0,n,2):
        for i in range (n):
            L[i,j] = 0.0
            # print L

    print L.nnz

# -----------------------------------------------------------
print 'submatrix test'
n = 100
L = spmatrix.ll_mat(n, n)

for i in range (0, n, 2):
    for j in range (1, n, 2):
        L[i,j] = float(n*i + j);
print L[10:18,75:80]
print L[10:15,35:10]
print L[19:15,35:10]

# -----------------------------------------------------------
print 'submatrix assign test'
n = 10
L = spmatrix.ll_mat(n, n);

for i in range (0, n, 1):
    for j in range (0, n, 1):
        L[i,j] = 1.0;

print L
Z = spmatrix.ll_mat(n-2, n-2)
L[1:n-1,1:n-1] = Z
print L
print L.nnz

#------------------------------------------------------------

if 0:
    f = open(os.environ['HOME']+'/matrices/poi2d_300.mtx')
    t1 = time.clock()
    L = ll_mat_from_mtx(f)
    t_read = time.clock() - t1
    f.close()
    print 'time for reading matrix data from file: %.2f sec' % t_read

if 1:
    t1 = time.clock()
    L = spmatrix.ll_mat_from_mtx(os.environ['HOME']+'/matrices/poi2d_300.mtx')
    t_read = time.clock() - t1
    print 'time for reading matrix data from file: %.2f sec' % t_read

#------------------------------------------------------------

L = spmatrix.ll_mat_from_mtx(os.environ['HOME']+'/matrices/node4x3x1_A.mtx')
print L.shape, L.nnz

A = L.to_sss()

class diag_prec:
    def __init__(self, A):
        self.shape = A.shape
        n = self.shape[0]
        self.dinv = Numeric.zeros(n, 'd')
        for i in xrange(n):
            self.dinv[i] = 1.0 / A[i,i]
    def precon(self, x, y):
        Numeric.multiply(x, self.dinv, y)

def resid(A, b, x):
    r = x.copy()
    A.matvec(x, r)
    r = b - r
    return math.sqrt(Numeric.dot(r, r))

K_diag = diag_prec(A)
K_jac = precon.jacobi(A, 1.0, 1)
K_ssor = precon.ssor(A, 1.0, 1)
# K_ilu = precon.ilutp(L)

n = L.shape[0];
b = Numeric.arange(n).astype(Numeric.Float)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-6, 1000)
print 'pcg, K_none: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-6, 1000, K_diag)
print 'pcg, K_diag: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-6, 1000, K_jac)
print 'pcg, K_jac: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.pcg(A, b, x, 1e-6, 1000, K_ssor)
print 'pcg, K_ssor: ', info, iter, relres, resid(A, b, x)

x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.minres(A, b, x, 1e-6, 1000)
print 'minres, K_none: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.minres(A, b, x, 1e-6, 1000, K_diag)
print 'minres, K_diag: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.minres(A, b, x, 1e-6, 1000, K_jac)
print 'minres, K_jac: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.minres(A, b, x, 1e-6, 1000, K_ssor)
print 'minres, K_ssor: ', info, iter, relres, resid(A, b, x)

x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.qmrs(A, b, x, 1e-6, 1000)
print 'qmrs, K_none: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.qmrs(A, b, x, 1e-6, 1000, K_diag)
print 'qmrs, K_diag: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.qmrs(A, b, x, 1e-6, 1000, K_jac)
print 'qmrs, K_jac: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.qmrs(A, b, x, 1e-6, 1000, K_ssor)
print 'qmrs, K_ssor: ', info, iter, relres, resid(A, b, x)

x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.cgs(A, b, x, 1e-6, 1000)
print 'cgs, K_none: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.cgs(A, b, x, 1e-6, 1000, K_diag)
print 'cgs, K_diag: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.cgs(A, b, x, 1e-6, 1000, K_jac)
print 'cgs, K_jac: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.cgs(A, b, x, 1e-6, 1000, K_ssor)
print 'cgs, K_ssor: ', info, iter, relres, resid(A, b, x)

x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.bicgstab(A, b, x, 1e-6, 1000)
print 'bicgstab, K_none: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.bicgstab(A, b, x, 1e-6, 1000, K_diag)
print 'bicgstab, K_diag: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.bicgstab(A, b, x, 1e-6, 1000, K_jac)
print 'bicgstab, K_jac: ', info, iter, relres, resid(A, b, x)
x = Numeric.zeros(n, 'd')
info, iter, relres = itsolvers.bicgstab(A, b, x, 1e-6, 1000, K_ssor)
print 'bicgstab, K_ssor: ', info, iter, relres, resid(A, b, x)

#------------------------------------------------------------

import superlu

L = spmatrix.ll_mat_from_mtx(os.environ['HOME']+'/matrices/cop18_el3_A.mtx')
##f = open('cop18_el5_A.mtx')
##L = ll_mat_from_mtx(f)
##f.close()
n11 = 4688
L = L[0:n11, 0:n11]                    # extract (1,1)-block

# make matrix regular
for i in xrange(n11):
    L[i,i] = 1

print L.shape, L.nnz
n = L.shape[0]

B = L.to_csr()
su = superlu.factorize(B, diag_pivot_thresh=0.0)
print su.nnz
b = Numeric.arange(n).astype(Numeric.Float) / n
x = Numeric.zeros(n, 'd')
su.solve(b, x)
print 'norm(b) = %g' % math.sqrt(Numeric.dot(b, b))
print 'norm(x) = %g' % math.sqrt(Numeric.dot(x, x))

r = Numeric.zeros(n, 'd')
B.matvec(x, r)
r = b - r
print 'norm(b - A*x) = %g' % math.sqrt(Numeric.dot(r, r))

if 1:
    for panel_size in [5, 10, 15]:
        for relax in [1, 3, 5]:
            for permc_spec in [0, 1, 2]:
                for diag_pivot_thresh in [0.0, 0.5, 1.0]:

                    t1 = time.clock()
                    su = superlu.factorize(B,
                                           panel_size=panel_size,
                                           relax=relax,
                                           permc_spec=permc_spec,
                                           diag_pivot_thresh=diag_pivot_thresh)
                    t_fact = time.clock() - t1

                    t1 = time.clock()
                    su.solve(b, x)
                    t_solve = time.clock() - t1

                    print 'panel_size=%2d, relax=%d, permc_spec=%d, diag_pivot_thresh=%.1f   nnz=%d, t_fact=%.2f, t_solve=%.2f' % \
                          (panel_size, relax, permc_spec, diag_pivot_thresh, su.nnz, t_fact, t_solve)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.