bakery_OO.py :  » Development » SimPy » SimPy-2.1.0beta » SimPyModels » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » SimPy 
SimPy » SimPy 2.1.0beta » SimPyModels » bakery_OO.py
"""bakery_OO.py
Scenario:
The Patisserie Francaise bakery has three ovens baking their renowned
baguettes for retail and restaurant customers. They start baking one
hour before the shop opens and stop at closing time. 
They bake batches of 40 breads at a time,
taking 25..30 minutes (uniformly distributed) per batch. Retail customers
arrive at a rate of 40 per hour (exponentially distributed). They buy
1, 2 or 3 baguettes with equal probability. Restaurant buyers arrive
at a rate of 4 per hour (exponentially dist.). They buy 20,40 or 60
baguettes with equal probability.
Simulate this operation for 100 days of 8 hours shop opening time.
a) What is the mean waiting time for retail and restaurant buyers?
b) What is their maximum waiting time?
b) What percentage of customer has to wait longer than 15 minutes??
c) Plot the number of baguettes over time for an arbitrary day.
   (use PLOTTING=True to do this)

"""
from SimPy.Simulation import *
from SimPy.SimPlot import *
import random
## Model components ------------------------
class Bakery:
    def __init__(self,nrOvens,toMonitor,sim):
        self.stock = Level(name="baguette stock",monitored=toMonitor,sim=sim)
        for i in range(nrOvens):
            ov=Oven(sim=sim)
            sim.activate(ov,ov.bake(capacity=batchsize,bakery=self))
class Oven(Process):
    def bake(self,capacity,bakery):
        while self.sim.now()+tBakeMax<tEndBake:
            yield hold,self,r.uniform(tBakeMin,tBakeMax)
            yield put,self,bakery.stock,capacity
class Customer(Process):
    def buyBaguette(self,cusType,bakery):
        tIn = self.sim.now()
        yield get,self,bakery.stock,r.choice(buy[cusType])
        waits[cusType].append(self.sim.now()-tIn)
class CustomerGenerator(Process):
    def generate(self,cusType,bakery):
        while True:
            yield hold,self,r.expovariate(1.0/tArrivals[cusType])
            if self.sim.now()<(tShopOpen+tBeforeOpen):
                c=Customer(cusType,sim=self.sim)
                self.sim.activate(c,c.buyBaguette(cusType,bakery=bakery))
## Model -----------------------------------
class BakeryModel(Simulation):
    def run(self):
        #toMonitor=False
        self.initialize()
        toMoni = day==(nrDays-1)
        b = Bakery(nrOvens=nrOvens,toMonitor=toMoni,sim=self)
        for cType in ["retail","restaurant"]:
            cg = CustomerGenerator(sim=self)
            self.activate(cg,cg.generate(cusType=cType,bakery=b),delay=tBeforeOpen)
        self.simulate(until=tBeforeOpen+tShopOpen)
        return b
## Experiment data -------------------------
nrOvens = 3
batchsize = 40                                                     #nr baguettes
tBakeMin = 25/60.; tBakeMax=30/60.                                #hours
tArrivals = {"retail":1.0/40,"restaurant":1.0/4}                  #hours
buy = {"retail":[1,2,3],"restaurant":[20,40,60]}                 #nr baguettes
tShopOpen = 8; tBeforeOpen = 1; tEndBake = tBeforeOpen+tShopOpen  #hours
nrDays=100
r=random.Random(12371)
PLOTTING=True
## Experiment ------------------------------
waits={}
waits["retail"]=[]; waits["restaurant"]=[]
bakMod = BakeryModel()
for day in range(nrDays):
    bakery = bakMod.run()
## Analysis/output -------------------------
print 'bakery_OO'
for cType in ["retail","restaurant"]:
    print "Average wait for %s customers: %4.2f hours"\
    %(cType,(1.0*sum(waits[cType]))/len(waits[cType]))
    print "Longest wait for %s customers: %4.1f hours"%(cType,max(waits[cType]))
    nrLong = len([1 for x in waits[cType] if x>0.25])
    nrCust = len(waits[cType])
    print "Percentage of %s customers having to wait for more than 0.25 hours: %s"\
           %(cType,100*nrLong/nrCust)    


if PLOTTING:
    plt = SimPlot()
    plt.plotStep(bakery.stock.bufferMon,
             title="Number of baguettes in stock during arbitrary day",color="blue")
    plt.mainloop()
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.