bcc_OO.py :  » Development » SimPy » SimPy-2.1.0beta » SimPyModels » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Development » SimPy 
SimPy » SimPy 2.1.0beta » SimPyModels » bcc_OO.py
""" bcc_OO.py

  Queue with blocked customers cleared
  Jobs (e.g messages) arrive randomly at rate 1.0 per minute at a
  2-server system.  Mean service time is 0.75 minutes and the
  service-time distribution is (1) exponential, (2) Erlang-5, or (3)
  hyperexponential with p=1/8,m1=2.0, and m2=4/7. However no
  queue is allowed; a job arriving when all the servers are busy is
  rejected.
  
  Develop and run a simulation program to estimate the probability of
  rejection (which, in steady-state, is the same as p(c)) Measure
  and compare the probability for each service time distribution.
  Though you should test the program with a trace, running just a few
  jobs, the final runs should be of 10000 jobs without a trace. Stop
  the simulation when 10000 jobs have been generated.
"""

from SimPy.Simulation import *
from random import seed,Random,expovariate,uniform

## Model components ------------------------

dist = ""
def bcc(lam, mu,s):
    """ bcc - blocked customers cleared model

    - returns p[i], i = 0,1,..s.
    - ps = p[s] = prob of blocking
    - lameff = effective arrival rate = lam*(1-ps)

    See Winston 22.11 for Blocked Customers Cleared Model (Erlang B formula)
    """
    rho = lam/mu
    n = range(s+1)
    p = [0]*(s+1)
    p[0] = 1
    sump = 1.0
    for i in n[1:]:
        p[i] = (rho/i)*p[i-1]
        sump = sump + p[i]
    p0 = 1.0/sump
    for i in n:
        p[i] = p[i]*p0
    p0 = p[0]    
    ps = p[s]
    lameff = lam*(1-ps)
    L = rho*(1-ps)
    return {'lambda':lam,'mu':mu,'s':s,
        'p0':p0,'p[i]':p,'ps':ps, 'L':L}

def ErlangVariate(mean,K):
    """ Erlang random variate

    mean = mean
    K = shape parameter
    g = rv to be used
    """
    sum = 0.0 ; mu = K/mean
    for i in range(K):
        sum += expovariate(mu)
    return (sum)

def HyperVariate(p,m1,m2):
    """ Hyperexponential random variate

    p = prob of branch 1
    m1 = mean of exponential, branch 1
    m2 = mean of exponential, branch 2
    g = rv to be used
    """
    if random() < p:
        return expovariate(1.0/m1)
    else: return expovariate(1.0/m2)

def testHyperVariate():
    """ tests the HyerVariate rv generator"""
    ERR=0
    x = (1.0981,1.45546,5.7470156)
    p = 0.0, 1.0 ,0.5
    g = Random(1113355)
    for i in range(3):
        x1 = HyperVariate(p[i],1.0,10.0,g)
        #print p[i], x1
        assert abs(x1 - x[i]) < 0.001,'HyperVariate error'

def erlangB(rho,c):
    """ Erlang's B formula for probabilities in no-queue

    Returns p[n] list
    see also SPlus and R version in que.q mmcK
    que.py has bcc.
    """
    n = range(c+1) ; pn = range(c+1)
    term = 1
    pn[0] = 1
    sum = 1 ; term = 1.0
    i=1
    while i < (c+1):
        term  *= rho/i
        pn[i] = term
        sum += pn[i]
        i += 1
    for i in n: pn[i] = pn[i]/sum
    return(pn)


class JobGen(Process):
    """ generates a sequence of Jobs
    """    
     
    def execute(self,JobRate,MaxJob,mu):
         global NoInService, Busy
         for i in range(MaxJob):         
             j = Job(sim=self.sim)
             self.sim.activate(j,j.execute(i,mu),delay=0.0)
             t = expovariate(JobRate)
             MT.tally(t)
             yield hold,self,t
         self.trace("Job generator finished")

    def trace(self,message):
        if JobGenTRACING: print "%8.4f \t%s"%(self.sim.now(), message)

class Job(Process):
    """ Jobs that are either accepted or rejected
    """
     
    def execute(self,i,mu):
        """ Job execution, only if accepted"""
        global NoInService,Busy,dist,NoRejected
        if NoInService < c:
            self.trace("Job %2d accepted b=%1d"%(i,Busy))
            NoInService +=1
            if NoInService == c:
                Busy =1
                try: BM.accum(Busy,now())
                except: "accum error BM=",BM
            #yield   hold,self,Job.g.expovariate(self.mu);           dist= "Exponential"
            yield   hold,self,ErlangVariate(1.0/mu,5);          dist= "Erlang     "
            #yield   hold,self,HyperVariate(1.0/8,m1=2.0,m2=4.0/7,g=Job.g); dist= "HyperExpon "
            NoInService -=1
            Busy =0
            BM.accum(Busy,self.sim.now())
            self.trace("Job %2d leaving b=%1d"%(i,Busy))
        else:
            self.trace("Job %2d REJECT  b=%1d"%(i,Busy))
            NoRejected +=1
 
    def trace(self,message):
        if JobTRACING: print "%8.4f \t%s"%(self.sim.now(), message)


## Experiment data -------------------------
c = 2
lam = 1.0      ## per minute
mu = 1.0/0.75  ## per minute
p = 1.0/8 ; m1= 2.0;  m2 = 4.0/7.0
K = 5
rho = lam/mu

NoRejected = 0
NoInService = 0
Busy = 0

JobRate = lam
JobMax = 10000

JobTRACING = 0
JobGenTRACING = 0


## Model/Experiment ------------------------------

seed(111333)
s=Simulation()
BM=Monitor(sim=s)
MT = Monitor(sim=s)

s.initialize()
jbg = JobGen(sim=s)
s.activate(jbg,jbg.execute(1.0,JobMax,mu),0.0)
s.simulate(until=20000.0)

## Analysis/output -------------------------

print 'bcc'
print "time at the end =",s.now()
print "now=",s.now(), " startTime ",BM.startTime
print "No Rejected = %d, ratio= %s"%(NoRejected,(1.0*NoRejected)/JobMax)
print "Busy proportion (%6s) = %8.6f"%(dist,BM.timeAverage(s.now()),)
print "Erlang pc (th)                = %8.6f"%(erlangB(rho,c)[c],)



www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.