geometry.py :  » GUI » Biggles » python2-biggles-1.6.6 » src » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » GUI » Biggles 
Biggles » python2 biggles 1.6.6 » src » geometry.py
#
# $Id: geometry.py,v 1.25 2007/04/19 15:51:46 mrnolta Exp $
#
# Copyright (C) 2000-2001 Mike Nolta <mrnolta@users.sourceforge.net>
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public
# License along with this program; if not, write to the
# Free Software Foundation, Inc., 59 Temple Place - Suite 330,
# Boston, MA  02111-1307, USA.
#

import math, numpy

# pt_* functions --------------------------------------------------------------

def pt_add( u, v ):
  return u[0] + v[0], u[1] + v[1]

def pt_sub( u, v ):
  return u[0] - v[0], u[1] - v[1]

def pt_mul( a, u ):
  return a * u[0], a * u[1]

def pt_rot( u, angle ):
  c, s = math.cos(angle), math.sin(angle)
  return c*u[0] - s*u[1], s*u[0] + c*u[1]

def pt_len( u ):
  return math.hypot( u[0], u[1] )

def pt_angle( u ):
  return math.atan2( u[1], u[0] )

def pt_unit( u ):
  r = pt_len(u)
  return u[0]/r, u[1]/r

def pt_min( a, b ):
  if a is None: return b
  if b is None: return a
  return min(a[0],b[0]), min(a[1],b[1])

def pt_max( a, b ):
  if a is None: return b
  if b is None: return a
  x = max( a[0], b[0] )
  if x is None:
    x = min( a[0], b[0] )
  y = max( a[1], b[1] )
  if y is None:
    y = min( a[1], b[1] )
  return x, y

# BoundingBox -----------------------------------------------------------------

class BoundingBox:

  def __init__( self, *args ):
    if len(args) > 0:
      self.p0 = reduce( pt_min, args )
      self.p1 = reduce( pt_max, args )
    else:
      self.p0 = None
      self.p1 = None

  def __str__( self ):
    return "(%s,%s)" % (str(self.p0), str(self.p1))

  def copy( self ):
    return BoundingBox( self.p0, self.p1 )

  def is_null( self ):
    return self.p0 is None or self.p1 is None

  def width( self ):
    if self.is_null():
      return None
    else:
      return abs( self.p0[0] - self.p1[0] )

  def height( self ):
    if self.is_null():
      return None
    else:
      return abs( self.p0[1] - self.p1[1] )

  def diagonal( self ):
    if self.is_null():
      return None
    else:
      return math.hypot( self.width(), self.height() )

  def aspect_ratio( self ):
    if self.is_null():
      return None
    else:
      return self.height()/self.width()

  def xrange( self ):
    if self.is_null():
      return None
    else:
      return self.p0[0], self.p1[0]

  def yrange( self ):
    if self.is_null():
      return None
    else:
      return self.p0[1], self.p1[1]

  def lowerleft( self ):
    if self.is_null():
      return None
    else:
      return self.p0

  def upperleft( self ):
    if self.is_null():
      return None
    else:
      return self.p0[0], self.p1[1]

  def upperright( self ):
    if self.is_null():
      return None
    else:
      return self.p1

  def lowerright( self ):
    if self.is_null():
      return None
    else:
      return self.p1[0], self.p0[1]

  def center( self ):
    x = self.xrange()
    y = self.yrange()
    return (x[0]+x[1])/2., (y[0]+y[1])/2.

  def union( self, other ):
    self.p0 = pt_min( self.p0, other.p0 )
    self.p1 = pt_max( self.p1, other.p1 )

  def deform( self, dt, db, dl, dr ):
    self.p0 = pt_sub( self.p0, (dl,db) )
    self.p1 = pt_add( self.p1, (dr,dt) )

  def shift( self, dp ):
    self.p0 = pt_add( self.p0, dp )
    self.p1 = pt_add( self.p1, dp )

  def expand( self, factor ):
    dp = pt_mul( factor/2., (self.width(), self.height()) )
    self.p0 = pt_sub( self.p0, dp )
    self.p1 = pt_add( self.p1, dp )

  def rotate( self, angle, p ):
    a = pt_add(pt_rot(pt_sub( self.lowerleft(), p), angle), p)
    b = pt_add(pt_rot(pt_sub(self.lowerright(), p), angle), p)
    c = pt_add(pt_rot(pt_sub( self.upperleft(), p), angle), p)
    d = pt_add(pt_rot(pt_sub(self.upperright(), p), angle), p)
    self.p0 = pt_min( a, pt_min( b, pt_min( c, d ) ) )
    self.p1 = pt_max( a, pt_max( b, pt_max( c, d ) ) )

  def make_aspect_ratio( self, ratio ):
    if ratio < self.aspect_ratio():
      dh = self.height() - ratio * self.width()
      self.p0 = self.p0[0], self.p0[1] + dh/2
      self.p1 = self.p1[0], self.p1[1] - dh/2
    else:
      dw = self.width() - self.height() / ratio
      self.p0 = self.p0[0] + dw/2, self.p0[1]
      self.p1 = self.p1[0] - dw/2, self.p1[1]

  def contains( self, q ):
    if self.p0[0] <= q[0] and \
       q[0] <= self.p1[0] and \
       self.p0[1] <= q[1] and \
       q[1] <= self.p1[1]:
      return 1
    else:
      return 0

# AffineTransform -------------------------------------------------------------

def _matrix_multipy( A, B ):
  C00 = A[0][0] * B[0][0] + A[0][1] * B[1][0]
  C01 = A[0][0] * B[0][1] + A[0][1] * B[1][1]
  C10 = A[1][0] * B[0][0] + A[1][1] * B[1][0]
  C11 = A[1][0] * B[0][1] + A[1][1] * B[1][1]
  return (C00, C01), (C10, C11)

class AffineTransform:

  def __init__( self ):
    self.t = 0., 0.
    self.m = (1., 0.), (0., 1.)

  def __call__( self, x, y ):
    p = self.t[0] + self.m[0][0] * x + self.m[0][1] * y
    q = self.t[1] + self.m[1][0] * x + self.m[1][1] * y
    return p, q

  def call_vec( self, x, y ):
    x_ = numpy.asarray( x )
    y_ = numpy.asarray( y )
    p = self.t[0] + self.m[0][0] * x_ + self.m[0][1] * y_
    q = self.t[1] + self.m[1][0] * x_ + self.m[1][1] * y_
    return p, q

  def compose( self, other ):
    self.t = self( other.t[0], other.t[1] )
    self.m = _matrix_multiply( self.m, other.m )

class RectilinearMap( AffineTransform ):

  def __init__( self, src, dest ):
    AffineTransform.__init__( self )
    sx = dest.width() / src.width()
    sy = dest.height() / src.height()
    p, q = dest.lowerleft(), src.lowerleft()
    tx = p[0] - sx * q[0]
    ty = p[1] - sy * q[1]
    self.t = tx, ty
    self.m = ( sx, 0. ), ( 0., sy )

www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.