ImageFilter.py :  » GUI » Python-Image-Library » Imaging-1.1.7 » PIL » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » GUI » Python Image Library 
Python Image Library » Imaging 1.1.7 » PIL » ImageFilter.py
#
# The Python Imaging Library.
# $Id$
#
# standard filters
#
# History:
# 1995-11-27 fl   Created
# 2002-06-08 fl   Added rank and mode filters
# 2003-09-15 fl   Fixed rank calculation in rank filter; added expand call
#
# Copyright (c) 1997-2003 by Secret Labs AB.
# Copyright (c) 1995-2002 by Fredrik Lundh.
#
# See the README file for information on usage and redistribution.
#

class Filter:
    pass

##
# Convolution filter kernel.

class Kernel(Filter):

    ##
    # Create a convolution kernel.  The current version only
    # supports 3x3 and 5x5 integer and floating point kernels.
    # <p>
    # In the current version, kernels can only be applied to
    # "L" and "RGB" images.
    #
    # @def __init__(size, kernel, **options)
    # @param size Kernel size, given as (width, height).  In
    #    the current version, this must be (3,3) or (5,5).
    # @param kernel A sequence containing kernel weights.
    # @param **options Optional keyword arguments.
    # @keyparam scale Scale factor.  If given, the result for each
    #    pixel is divided by this value.  The default is the sum
    #    of the kernel weights.
    # @keyparam offset Offset.  If given, this value is added to the
    #    result, after it has been divided by the scale factor.

    def __init__(self, size, kernel, scale=None, offset=0):
        if scale is None:
            # default scale is sum of kernel
            scale = reduce(lambda a,b: a+b, kernel)
        if size[0] * size[1] != len(kernel):
            raise ValueError("not enough coefficients in kernel")
        self.filterargs = size, scale, offset, kernel

    def filter(self, image):
        if image.mode == "P":
            raise ValueError("cannot filter palette images")
        return apply(image.filter, self.filterargs)

class BuiltinFilter(Kernel):
    def __init__(self):
        pass

##
# Rank filter.

class RankFilter(Filter):
    name = "Rank"

    ##
    # Create a rank filter.  The rank filter sorts all pixels in
    # a window of the given size, and returns the rank'th value.
    #
    # @param size The kernel size, in pixels.
    # @param rank What pixel value to pick.  Use 0 for a min filter,
    #    size*size/2 for a median filter, size*size-1 for a max filter,
    #    etc.

    def __init__(self, size, rank):
        self.size = size
        self.rank = rank

    def filter(self, image):
        if image.mode == "P":
            raise ValueError("cannot filter palette images")
        image = image.expand(self.size/2, self.size/2)
        return image.rankfilter(self.size, self.rank)

##
# Median filter.  Picks the median pixel value in a window with the
# given size.

class MedianFilter(RankFilter):
    name = "Median"

    ##
    # Create a median filter.
    #
    # @param size The kernel size, in pixels.

    def __init__(self, size=3):
        self.size = size
        self.rank = size*size/2

##
# Min filter.  Picks the lowest pixel value in a window with the given
# size.

class MinFilter(RankFilter):
    name = "Min"

    ##
    # Create a min filter.
    #
    # @param size The kernel size, in pixels.

    def __init__(self, size=3):
        self.size = size
        self.rank = 0

##
# Max filter.  Picks the largest pixel value in a window with the
# given size.

class MaxFilter(RankFilter):
    name = "Max"

    ##
    # Create a max filter.
    #
    # @param size The kernel size, in pixels.

    def __init__(self, size=3):
        self.size = size
        self.rank = size*size-1

##
# Mode filter.  Picks the most frequent pixel value in a box with the
# given size.  Pixel values that occur only once or twice are ignored;
# if no pixel value occurs more than twice, the original pixel value
# is preserved.

class ModeFilter(Filter):
    name = "Mode"

    ##
    # Create a mode filter.
    #
    # @param size The kernel size, in pixels.

    def __init__(self, size=3):
        self.size = size
    def filter(self, image):
        return image.modefilter(self.size)

##
# Gaussian blur filter.

class GaussianBlur(Filter):
    name = "GaussianBlur"

    def __init__(self, radius=2):
        self.radius = 2
    def filter(self, image):
        return image.gaussian_blur(self.radius)

##
# Unsharp mask filter.

class UnsharpMask(Filter):
    name = "UnsharpMask"

    def __init__(self, radius=2, percent=150, threshold=3):
        self.radius = 2
        self.percent = percent
        self.threshold = threshold
    def filter(self, image):
        return image.unsharp_mask(self.radius, self.percent, self.threshold)

##
# Simple blur filter.

class BLUR(BuiltinFilter):
    name = "Blur"
    filterargs = (5, 5), 16, 0, (
        1,  1,  1,  1,  1,
        1,  0,  0,  0,  1,
        1,  0,  0,  0,  1,
        1,  0,  0,  0,  1,
        1,  1,  1,  1,  1
        )

##
# Simple contour filter.

class CONTOUR(BuiltinFilter):
    name = "Contour"
    filterargs = (3, 3), 1, 255, (
        -1, -1, -1,
        -1,  8, -1,
        -1, -1, -1
        )

##
# Simple detail filter.

class DETAIL(BuiltinFilter):
    name = "Detail"
    filterargs = (3, 3), 6, 0, (
        0, -1,  0,
        -1, 10, -1,
        0, -1,  0
        )

##
# Simple edge enhancement filter.

class EDGE_ENHANCE(BuiltinFilter):
    name = "Edge-enhance"
    filterargs = (3, 3), 2, 0, (
        -1, -1, -1,
        -1, 10, -1,
        -1, -1, -1
        )

##
# Simple stronger edge enhancement filter.

class EDGE_ENHANCE_MORE(BuiltinFilter):
    name = "Edge-enhance More"
    filterargs = (3, 3), 1, 0, (
        -1, -1, -1,
        -1,  9, -1,
        -1, -1, -1
        )

##
# Simple embossing filter.

class EMBOSS(BuiltinFilter):
    name = "Emboss"
    filterargs = (3, 3), 1, 128, (
        -1,  0,  0,
        0,  1,  0,
        0,  0,  0
        )

##
# Simple edge-finding filter.

class FIND_EDGES(BuiltinFilter):
    name = "Find Edges"
    filterargs = (3, 3), 1, 0, (
        -1, -1, -1,
        -1,  8, -1,
        -1, -1, -1
        )

##
# Simple smoothing filter.

class SMOOTH(BuiltinFilter):
    name = "Smooth"
    filterargs = (3, 3), 13, 0, (
        1,  1,  1,
        1,  5,  1,
        1,  1,  1
        )

##
# Simple stronger smoothing filter.

class SMOOTH_MORE(BuiltinFilter):
    name = "Smooth More"
    filterargs = (5, 5), 100, 0, (
        1,  1,  1,  1,  1,
        1,  5,  5,  5,  1,
        1,  5, 44,  5,  1,
        1,  5,  5,  5,  1,
        1,  1,  1,  1,  1
        )

##
# Simple sharpening filter.

class SHARPEN(BuiltinFilter):
    name = "Sharpen"
    filterargs = (3, 3), 16, 0, (
        -2, -2, -2,
        -2, 32, -2,
        -2, -2, -2
        )
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.