gyro.py :  » Game-2D-3D » Visual » visual-5.32_release » examples » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Game 2D 3D » Visual 
Visual » visual 5.32_release » examples » gyro.py
from visual import *
from visual.text import *

# Gyroscope hanging from a spring
# Bruce Sherwood

print """
Click to pause, click to proceed.
Click on rotor to see angular momentum and impulse arrows.
Click again on rotor to hide these arrows.
"""

arrowsvisible = 0  # angular momentum and angular impulse arrows

scene.title = 'Gyroscope'
scene.visible = 0
top = vector(0,1.,0) # where top of spring is held
ks = 100. # spring stiffness
Lspring = 1. # unstretched length of spring
Rspring = 0.03 # radius of spring
Dspring = 0.03 # thickness of spring wire
Lshaft = 1. # length of gyroscope shaft
Rshaft = 0.03 # radius of gyroscope shaft
M = 1. # mass of gyroscope (massless shaft)
Rrotor = 0.4 # radius of gyroscope rotor
Drotor = 0.1 # thickness of gyroscope rotor
Dsquare = 1.4*Drotor # thickness of square that turns with rotor
I = 0.5*M*Rrotor**2. # moment of inertia of gyroscope
omega = 40 # angular velocity of rotor along axis
g = 9.8
Fgrav = vector(0,-M*g,0)
precession = M*g*(Lshaft/2.)/(I*abs(omega)) # exact precession angular velocity
phi = atan(precession**2*(Lshaft/2.)/g) # approximate angle of spring to vertical
s = M*g/(ks*cos(phi)) # approximate stretch of spring
# Refine estimate of angle of spring to vertical:
phi = 1./( ((I*abs(omega))/(M*Lshaft/2.))**2/(g*Lshaft/2.)-(Lspring+s)/(Lshaft/2.) )
# Refine again:
s = M*g/(ks*cos(phi))
phi = 1./( ((I*abs(omega))/(M*Lshaft/2.))**2/(g*Lshaft/2.)-(Lspring+s)/(Lshaft/2.) )
pprecess = vector(0,-1,M*precession*(Lshaft/2.+(Lspring+s)*sin(phi)))
# Momentum required for completely smooth precession:
##pprecess = vector(0,0,M*precession*(Lshaft/2.+(Lspring+s)*sin(phi)))
if omega < 0:
    pprecess = -pprecess

support = box(pos=top+vector(0,0.01,0), size=(0.2,0.02,0.2), color=color.green)
spring = helix(pos=top, axis=vector(-(Lspring+s)*sin(phi),-(Lspring+s)*cos(phi),0), coils=10,
                  radius=Rspring, thickness=Dspring, color=(1,0.7,0.2))
gyro = frame(pos=top+spring.axis) # gyro.pos at end of spring
gyro.axis = vector(1,0,0)
shaft = cylinder(pos=gyro.pos, axis=Lshaft*gyro.axis,
                 radius=Rshaft, color=(0.85,0.85,0.85))
rotor = cylinder(pos=0.5*gyro.axis*(Lshaft-Drotor),
                 axis=gyro.axis*Drotor,
                 radius=Rrotor, color=(0.5,0.5,0.5))
stripe1 = curve(frame=gyro, color=color.black,
               pos=[rotor.pos+1.03*rotor.axis+vector(0,Rrotor,0),
                    rotor.pos+1.03*rotor.axis-vector(0,Rrotor,0)])
stripe1 = curve(frame=gyro, color=color.black,
               pos=[rotor.pos-0.03*rotor.axis+vector(0,Rrotor,0),
                    rotor.pos-0.03*rotor.axis-vector(0,Rrotor,0)])
gyro.rotate(axis=(0,1,0), angle=pi)

cm = gyro.pos+0.5*Lshaft*gyro.axis # center of mass of shaft
Lrot = I*omega*gyro.axis
p = pprecess
dt = 0.01
t = 0.
Lrotarrow = arrow(length=0, shaftwidth=Rshaft,
                  color=color.red, visible=arrowsvisible)
Lrotscale = 0.2
rotimpulsearrow = arrow(length=0, shaftwidth=Lrotarrow.shaftwidth,
                    color=color.cyan, visible=arrowsvisible)
rotimpulsescale = 5.
Lrotlabel = text(string='L', height=0.06, depth=0.25, visible=arrowsvisible,
                 justify='center', color=Lrotarrow.color)
Lrotimpulselabel = text(string='DL', justify='center', visible=arrowsvisible,
                height=0.06, depth=0.25, color=rotimpulsearrow.color)

while True:
    rate(50)
    if scene.mouse.clicked: # pause the animation with a mouse click
        m = scene.mouse.getclick()
        if m.pick is rotor:
            arrowsvisible = not arrowsvisible
            Lrotarrow.visible = arrowsvisible
            rotimpulsearrow.visible = arrowsvisible
            for obj in Lrotlabel.objects:
                obj.visible = arrowsvisible
            for obj in Lrotimpulselabel.objects:
                obj.visible = arrowsvisible
        else:
            while 1:
                if scene.mouse.clicked:
                    scene.mouse.getclick()
                    break
            
    Fspring = -ks*norm(spring.axis)*(mag(spring.axis)-Lspring)
    # Calculate torque about center of mass:
    torque = cross(-0.5*Lshaft*gyro.axis,Fspring)
    Lrot = Lrot+torque*dt
    p = p+(Fgrav+Fspring)*dt
    cm = cm+(p/M)*dt

    # Update positions of shaft, rotor, spring, stripes
    if omega > 0:
        gyro.axis = norm(Lrot)
    else:
        gyro.axis = -norm(Lrot)
    gyro.pos = cm-0.5*Lshaft*gyro.axis # shaft rotated, adjust connection to spring
    spring.axis = gyro.pos - top
    gyro.rotate(angle=omega*dt/4.) # spin easier to see if slower than actual omega
    shaft.pos = gyro.pos
    shaft.axis = Lshaft*gyro.axis
    rotor.pos = gyro.pos+0.5*gyro.axis*(Lshaft-Drotor)
    rotor.axis = gyro.axis*Drotor

    # Update arrows representing angular momentum and angular impulse
    Lrotarrow.pos = gyro.pos+0.5*Lshaft*gyro.axis+vector(0,2.*Rshaft,0)
    Lrotarrow.axis = Lrot*Lrotscale
    rotimpulsearrow.pos = Lrotarrow.pos+Lrotarrow.axis
    rotimpulsearrow.axis = torque*dt*rotimpulsescale
    Lrotlabel.frame.pos = Lrotarrow.pos+Lrotarrow.axis/2.+vector(0,Rshaft,0)
    Lrotimpulselabel.frame.pos = rotimpulsearrow.pos+rotimpulsearrow.axis-vector(0,3.*Rshaft,0)

    if t == 0.: # make sure everything is set up before first visible display
        scene.visible = 1
        scene.autoscale = 0
    t = t+dt


www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.