zmod.py :  » Language-Interface » ChinesePython » chinesepython2.1.3-0.4 » Lib » lib-old » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Language Interface » ChinesePython 
ChinesePython » chinesepython2.1.3 0.4 » Lib » lib old » zmod.py
# module 'zmod'

# Compute properties of mathematical "fields" formed by taking
# Z/n (the whole numbers modulo some whole number n) and an 
# irreducible polynomial (i.e., a polynomial with only complex zeros),
# e.g., Z/5 and X**2 + 2.
#
# The field is formed by taking all possible linear combinations of
# a set of d base vectors (where d is the degree of the polynomial).
#
# Note that this procedure doesn't yield a field for all combinations
# of n and p: it may well be that some numbers have more than one
# inverse and others have none.  This is what we check.
#
# Remember that a field is a ring where each element has an inverse.
# A ring has commutative addition and multiplication, a zero and a one:
# 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x.  Also, the distributive
# property holds: a*(b+c) = a*b + b*c.
# (XXX I forget if this is an axiom or follows from the rules.)

import poly


# Example N and polynomial

N = 5
P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2


# Return x modulo y.  Returns >= 0 even if x < 0.

def mod(x, y):
  return divmod(x, y)[1]


# Normalize a polynomial modulo n and modulo p.

def norm(a, n, p):
  a = poly.modulo(a, p)
  a = a[:]
  for i in range(len(a)): a[i] = mod(a[i], n)
  a = poly.normalize(a)
  return a


# Make a list of all n^d elements of the proposed field.

def make_all(mat):
  all = []
  for row in mat:
    for a in row:
      all.append(a)
  return all

def make_elements(n, d):
  if d == 0: return [poly.one(0, 0)]
  sub = make_elements(n, d-1)
  all = []
  for a in sub:
    for i in range(n):
      all.append(poly.plus(a, poly.one(d-1, i)))
  return all

def make_inv(all, n, p):
  x = poly.one(1, 1)
  inv = []
  for a in all:
    inv.append(norm(poly.times(a, x), n, p))
  return inv

def checkfield(n, p):
  all = make_elements(n, len(p)-1)
  inv = make_inv(all, n, p)
  all1 = all[:]
  inv1 = inv[:]
  all1.sort()
  inv1.sort()
  if all1 == inv1: print 'BINGO!'
  else:
    print 'Sorry:', n, p
    print all
    print inv

def rj(s, width):
  if type(s) is not type(''): s = `s`
  n = len(s)
  if n >= width: return s
  return ' '*(width - n) + s

def lj(s, width):
  if type(s) is not type(''): s = `s`
  n = len(s)
  if n >= width: return s
  return s + ' '*(width - n)
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.