kalman.py :  » Math » Matrix-package-for-Python » MatPy-0.4.0 » DynSys » Python Open Source

Home
Python Open Source
1.3.1.2 Python
2.Ajax
3.Aspect Oriented
4.Blog
5.Build
6.Business Application
7.Chart Report
8.Content Management Systems
9.Cryptographic
10.Database
11.Development
12.Editor
13.Email
14.ERP
15.Game 2D 3D
16.GIS
17.GUI
18.IDE
19.Installer
20.IRC
21.Issue Tracker
22.Language Interface
23.Log
24.Math
25.Media Sound Audio
26.Mobile
27.Network
28.Parser
29.PDF
30.Project Management
31.RSS
32.Search
33.Security
34.Template Engines
35.Test
36.UML
37.USB Serial
38.Web Frameworks
39.Web Server
40.Web Services
41.Web Unit
42.Wiki
43.Windows
44.XML
Python Open Source » Math » Matrix package for Python 
Matrix package for Python » MatPy 0.4.0 » DynSys » kalman.py
#!/usr/bin/env python
# (C) 2000 Huaiyu Zhu <hzhu@users.sourceforge.net>.   Licence: GPL
# $Id: kalman.py,v 1.3 2000/10/04 22:27:36 hzhu Exp $

"""
DynSys.kalman : Defines LinearSystem with kalman filtering

System description:
    state:              x+  =   A*x + u + w
    measurement:        z   =   H*x + v

Variables:
    state:              x
    input:              u   
    measurement:        z   
    process noise:      w   =   Q2*randn    ~   N(0, Q)
    measurement noise:  v   =   R2*randn    ~   N(0, R)
    precision:          S   =   <x, x>^-1
    variance:           V   =   <x, x>
    dim of system:      n 
    dim of measurement: m

Kalman filtering:
    Random walk increases prior variance
        S_ = (A * V * A.T + Q).I
        x_ = A * x + u
    Measurement increases posterior precision
        V = (S_ + H.T * R.I * H).I
        x = x_ + V * H.T * R.I * (z - H * x_)

Note:  x is used for 
    system state   - in evolve(), measure()
    estimate state - in filter()

Open question: Why A.T*V*A appears to give a little better result?

"""


from MatPy.Matrix import eye,zeros,norm
from MatPy.Stats.distribs import randn

class LinearSystem:

  """ LinearSystem: with system process, measurement process and filtering

  Usage: (see also example in the self test block at end)
    next state:    x, u = evolve(x)
    measurement:  z = measure(x)
    posterior est:  tx = filter(z, u)

  Applications are likely to override some of the methods:  
    init_params, init_state, system_params, measure_params
    evolve, measure, filter

  """

  def init_params(self, n=1, m=1):

    """ sets system parameters - override in apps """

    self.n = n
    self.m = m
    self.A = randn((n,n))/n;
    self.Q2 = q = randn((n,n))/n*.1
    self.Q = q * q.T

    self.H = randn((m,n))/m
    self.R2 = r = randn((m,m))/m
    self.R = r * r.T
    self.RI = self.R.I
    return self

  def init_state(self):

    """ set initial system states - override in apps """

    n = self.n
    self.x = zeros((n,1))
    self.V = eye(n)
    return self

  def system_params(self):

    """ one-step system parameters - override in apps """

    return self.A, self.Q, self.Q2, self.n

  def measure_params(self):

    """ one-step measurement parameters - override in apps """

    return self.H, self.RI, self.R2, self.m

  def evolve(self, x, w=None):

    """ simulated system evolution - override in apps """

    A, Q, Q2, n = self.system_params()
    if w is None: w = Q2 * randn((n,1))
    u = randn(self.x.shape)
    x_ = A * x + u + w
    return x_, u

  def measure(self, x, v=None):

    """ simulated measurement - override in apps """

    H, RI, R2, m = self.measure_params()
    if v is None: v = R2 * randn((m,1))
    z = H * x + v
    return z

  def filter(self, z, u):

    """ Kalman filtering: return estimate x, given measure z, input u
    """

    x, V = self.x, self.V

    # prior esitmate
    A, Q, Q2, n = self.system_params()
    S_ = (A * V * A.T + Q).I
    x_ = A * x + u

    # posterior estimate
    H, RI, R2, m = self.measure_params()
    V = (S_ + H.T * RI * H).I
    x = x_ + V * H.T * RI * (z - H * x_)

    self.x, self.V = x, V
    return x


if __name__ == "__main__":

  """ Simulate linear system with Kalman filtering """

  # system and mesurement dimensions
  n = 4
  m = 5
  linsys = LinearSystem().init_params(n=n, m=m).init_state()

  x = randn(linsys.x.shape)
  e = []
  for i in range(300):

    x, u = linsys.evolve(x)
    z = linsys.measure(x)
    tx = linsys.filter(z, u)

    # print state, estimate or their distance
    e.append(norm(x-tx))
    if n < 6: print x.T, tx.T, "%.4g" % e[i]
    else: print e[i]

  # Plotting errors
  from MatPy.gplot import Gplot,wait
  from MatPy.Matrix import Matrix
  g = Gplot()
  g.plot([Matrix(e)])
  wait()
 
www.java2java.com | Contact Us
Copyright 2009 - 12 Demo Source and Support. All rights reserved.
All other trademarks are property of their respective owners.